Warped protoplanetary discs

Rebecca Nealon Stephen Hawking Fellow

with Giulia Ballabio, Sahl Rowther, Farzana Meru, Christophe Pinte, Richard Alexander and Daniel Price

WARPING AWAY GRAVITATIONAL INSTABILITIES IN PROTOPLANETARY DISCS AVAILABLE THE ABLE ON TODAXIV

Sahl Rowther, Rebecca Nealon and Farzana Meru

HD143006: CIRCUMBINARY PLANET OR **MISALIGNED DISC?**

Giulia Ballabio, Rebecca Nealon, Richard Alexander, Nicolas Cuello, Christophe Pinte and Daniel Price

HD 143006: OBSERVATIONS

Perez et al. 2018

SPHERE J-band

PROPOSAL 1: A CIRCUMBINARY DISC

The proposed scenario: a binary at the centre breaks the disc and drives the misalignment.

Facchini et al. 2013, 2018

PROPOSAL 1: A CIRCUMBINARY DISC

The proposed scenario: a binary at the centre breaks the disc and drives the Benisty et al. 2018 misalignment.

The proposed model assumes an equal mass binary companion.

BUT..

Not observed!

Model A

HD 143006: WE ALSO HAVE CHANNEL MAPS

Presence of a "kink" in the channel maps at radial distance of a putative planet within the cavity

Pinte et al. 2020

PROPOSAL 2: A DISTANT MISALIGNED COMPANION

Companion further out in the disc.

> Constraint on the mass ratio *q<0.2*

SO, WHAT CAUSES THE MISALIGNMENT?

.... Or

- 1. Misaligned gas < 8 au
- 2. Extent of cavity 8-32 au
- 3. Relative misalignment ~30-40 degrees
- Mass ratio 0.1-0.2 4.
- 5. Consistent with kinematics

1. AN INCLINED BINARY

PROPOSAL 2: A DISTANT MISALIGNED COMPANION

20 Jupiter mass planet inclined by 30 degrees 0 orbits We get a cavity, but what -8 -6 -4 log density

happens to the misalignment?!

PROPOSAL 2: A DISTANT MISALIGNED COMPANION

20 Jupiter mass planet inclined by 30 degrees

(Computed with MCFOST)

PROPOSAL 3: WHY DON'T WE HAVE BOTH?

We propose a scenario in which there is an inclined binary at the centre and a planetary companion co-planar with the outer disc.

Inclined binary: causes the misalignment of the inner disc

PROPOSAL 3: BOTH AN INCLINED BINARY AND A PLANET FURTHER OUT

PROPOSAL 3: BOTH AN INCLINED BINARY AND A PLANET FURTHER OUT

PROPOSAL 3: IN SYNTHETIC SCATTERED LIGHT

(Computed with MCFOST)

PROPOSAL 3: THE KINEMATICS

Observation

Simulation

PROPOSAL 3: IN DUST MM CONTINUMM

(Computed with MCFOST+CASA)

HD143006 LIKELY HAS BOTH AN INCLINED BINARY AND A DISTANT PLANET

- We found that the observations are best explained using a combination of an inner misaligned binary and a planet around 30-40 au
- This still doesn't explain the over-brightness
- Identify a misaligned circumplanetary disc (as theoretically predicted)
- What does it mean to the planet evolution to be in this kind of a system?

MARPING AWAY **GRAVITATIONAL INSTABILITIES IN PROTOPLANETARY DISCS**

Sahl Rowther

THE ROYAL SOCIETY

The role of the warp in the disc's evolution

Warp induces an oscillating radial pressure gradient (Lodato & Pringle 2007).

$$\frac{\partial p}{\partial R} \sim \frac{p\psi}{H}$$

Sahl Rowther

The role of the warp in the disc's evolution

• This induced pressure gradient can trigger a response in the velocity flow of the disc (Lodato & Pringle 2007).

 This induced pressure gradient can trigger a response in the velocity flow of the disc (Lodato & Pringle 2007).

Sahl Rowther

Evolution into a Gravitationally Stable Disc

Why does the disc become gravitationally stable?

The warp heats up the disc pushing it towards stability.

Sahl Rowther

du dt

Heating

Sahl Rowther

The Internal Energy Equation $\cdot v) + \Lambda_{sl}$ Shock Cooling Heating T lerm

The warp triggers a strong response in the induced radial velocities

Changing the Warp Inclination

Warp amplitude is largest for greater misalignments.

Changing the Warp Inclination

Changing the Warp Inclination

WARPING AWAY GRAVITATIONAL INSTABILITIES IN PROTOPLANETARY DISCS

- If the warp is strong enough it can push discs into the gravitationally stable regime suppressing spiral structures.
- This is due to the oscillating radial pressure gradient induced by the warp which triggers a response in the velocity flow of the disc. This causes the disc to heat up and become gravitationally stable.
- In some cases, the disc evolves to form ring & gap structure.

