Observing Embedded Disks and the Onset of Planet Formation

Dr. Dominique M. Segura-Cox

NSF Astronomy and Astrophysics Postdoctoral Fellow at UT Austin dominique.seguracox@austin.utexas.edu 25/10/21

Dominique Segura-Cox Most 0/I Disks are Small: VLA

Segura-Cox et al. (2016, 2018)

VANDAM Survey

- 8 mm, 12 au resolution
- 80 Class 0 & I protostars
- 76% of targets have disks with R < 12 au

Dominique Segura-Cox Most 0/I Disks are Small: PdBI

- CALYPSO Survey
- 1 & 3 mm, ~130 au resolution
- 16 Class 0 protostars + more 0 & I from literature
- 75% of Class 0 protostars have disks with R < 60 AU

Most Disks are Small: ALMA

Resolved Disks

 $1.0 \ 0.5 \ 0.0 \ -0.5 \ -1.0 \ 1.0 \ 0.5 \ 0.0 \ -0.5 \ -1.0 \ 1.0 \ 0.5 \ 0.0 \ -0.5 \ -1.0$

 $\Delta R.A.[arcsec]$

Dominique Segura-Cox

Unresolved Disks

- ODISEA Survey
- ~300 Class I, II, III, & flat spectrum targets
- 85% of 133 detected targets have disks with R < 30 AU

Dominique Segura-Cox Young Disk Demographics, Mass

Tobin et al. (2020)

Overall trend that younger disks contain more dust mass than more evolved sources

Dominique Segura-Cox Young Disk Demographics, Mass

Tobin et al. (2020)

	100
ass 0 ass I at Spectro co	um
eon	
10 ³	

Younger star forming regions have higher disk masses than older star forming regions

Dominique Segura-Cox Young Disk Demographics, Mass

Tobin et al. (2020)

Williams et al. (2019)

Embedded Disks can be Large and Massive

Segura-Cox et al. (2016, 2018)

Embedded Disks can be Large and Massive

Can be large enough to encompass Neptune orbits and beyond

Segura-Cox et al. (2016, 2018)

Per-emb-30

Embedded Disks can be Large and Massive

Can be large enough to **encompass Neptune** orbits and beyond

Segura-Cox et al. (2016, 2018)

Per-emb-30

Dominique Segura-Cox >1 Million Year Disks Have Rings

ALMA Partnership et al. (2015)

>1 Million Year Disks Have Rings

ALMA Partnership et al. (2015)

The Youngest Rings **IRS 63**

Segura-Cox et al. (2020)

Dominique Segura-Cox A Solar System Scale Class I Disk

IRS 63 Class I

• Gap Ring • Gap Ring

40 au

Segura-Cox et al. (Nature 2020)

Solar System orbits to scale

- Sun and inner planets
- Jupiter
- Saturn
- Uranus
- Neptune
- Pluto

Enough mass in solid material in the rings to form multiple giant planet cores

Dominique Segura-Cox Young Rings: Deep vs. Shallow

Different ring formation mechanisms or timescales?

Cieza et al. (2021)

Young Rings: Multi-wavelength View **GY 91** mJy/beam

Sheehan et al. (2018)

Radial Profiles Hint at Substructures

Cieza et al. (2019)

Radial Profiles Hint at Substructures

 $mJy \cdot beam^{-1}$

de Valon et al. (2020)

Dominique Segura-Cox

Young Cavities

Planet formation in inner regions of disk? Unresolved tight binaries?

Sheehan et al. (2020)

Dominique Segura-Cox Continuum Shows Warm Disks

HH 212

Lin et al. (2021)

Modeling the continuum at multiple wavelengths show disk temperature > 20 - 30 K

Dominique Segura-Cox Chemistry Shows Warm Disks

Lee et al. (2017)

COMs in disk atmosphere.

van 't Hoff et al. (2021)

Dominique Segura-Cox

Snowlines Reveal Warm Disks

A Warm Edge-on Disk

van 't Hoff et al. (2018)

An Warm Edge-on Disk with Substructures Flux (mJy per beam) L1527 200 8 QBand (0.67 cm)**Innermost region** 35 of warped disk is 150 (b)clumpy. clump-N S 100 17.5 -50 0 50 Radial distance (AU) (au) () clump-C -17.5 -100 -mm continuum clump-S 150 -35 1.3 -17.5 17.5 -35 35

Nakatani et al. (2020), Sakai et al. (2018)

Dominique Segura-Cox

(au)

More Warm Disks

Dominique Segura-Cox

IRAS 16293 A

Close multiples can also have warm disks at solar-system scales.

Maureira et al. (2020)

L1448-IRS3B

Dominique Segura-Cox

Close Multiples

2										
0	0	2	4	6	8	10	12	14	16	18
			ш.	lux De	nsity	(mJy/b	eam)			

Takakuwa et al. (2017)

VLA 1623

Harris et al. (2018)

Dominique Segura-Cox

Close Multiples

Sadavoy et al. (2018)

Dominique Segura-Cox

50 au

50 au

Clear chemical differentiation between the two sources. True differentiation? **Optical depth?**

Bianchi et al. (2020)

Close Multiples, Multi-scale Complex Structures

Alves et al. (2017, 2019)

Lee et al. (2020), Reynolds et al. (2021)

Dominique Segura-Cox

Spirals

L1448-IRS3B & L1448 IRS3A

Dominique Segura-Cox

Observing Grain Growth TMC1A

CO isotopologues disappear where the continuum emission peaks.

Dominique Segura-Cox

Observing Grain Growth

emission can be reproduced with models of high disk mass, large grains, or high optical depth.

Harsono et al. (2018)

Hidden Substructures?

Dominique Segura-Cox

Harsono et al. (2018)

Another Disk with Hidden Mass?

Garufi et al. (2020)

Connections to the Envelope

10

8

6

1

S

(km

Dominique Segura-Cox

L1489 IRS 12

> An asymmetric kinematic connection reaches from the disk to envelope scales.

Connections to Even Larger Scales Per-emb-2

Filament Scale

Barnard 1 Herschel $250 \mu m$ 30,000 au

Sadavoy et al. (2012, 2014)

Pineda et al. (2020)

Dominique Segura-Cox

Reprocessed from Tobin et al. (2018)

Summary: Embedded Disks Might Jump-Start **Planet Formation**

Class 0 and I disks are still embedded in their envelopes! Does planet formation start while the disk material is replenished?

Dominique Segura-Cox NSF Postdoctoral Fellow dominique.seguracox@austin.utexas.edu www.seguracox.com

Dust rings are present in the Class I phase. **Conditions for planet** formation satisfied early?

Class 0's have warps and asymmetries.

Connections to the Envelope

Segura-Cox et al. (2020)

Dominique Segura-Cox

500 au

IRS 63 Class I H¹³CO⁺ (4-3) ALMA 870 μ m·

Segura-Cox et al. in prep
