

Substructures in Embedded Disks: Insights from the VANDAM Orion Survey

Image credit: Tobin et al. 2020

Patrick Sheehan NSF Astronomy & Astrophysics Fellow MIAPP Program: Gaps, Rings, Spirals, and Vortices October 26, 2021

ubstructures Planet Formation Patrick Sheehan in Embedded Disks: Insights NSF Astronomy & Astrophysics Fellow MIAPP Program: Gaps, Rings, Spirals, and Vortices from the VANDAM Orion Survey October 26, 2021

Image credit: Tobin et al. 2020

Substructures in protoplanetary disks I. Why Embedded Disks?

DSHARP, 2018

Substructures appear to be ubiquitous

Protoplanetary disk structures are not primordial

Stages of Star Formation I. Why Embedded Disks?

Image credit: Magnus Persson

"Embedded" disks

- -The earliest stages of disks (t < 0.5 Myr)
- -Disk size a tracer of envelope collapse?
- -Set the stage for disk evolution and planet formation

- "Protoplanetary" disks
- -Ages of 1-10 Myr
- -Where planets are forming?

A New Era of Protostellar Disk Surveys I. Why Embedded Disks?

VANDAM: Orion 300 Embedded Disks Tobin et al. 2020

ODISEA: Ophiuchus 78 Embedded Disks

Cieza et al. 2018

CALYPSO (PdBI) 16 Embedded Disks

MASSES (SMA) - Perseus 74 Embedded Disks

III. Substructures: Witnessing Planet Formation in Embedded Disks?

1	HOPS-65	HOPS-124
5		0
	0	•
7	HOPS-163	
	-	
100		
	0	

III. Substructures: Witnessing Planet Formation in Embedded Disks?

	HOPS-65	HOPS-124
3		0
	0	•
7	HOPS-163	
	0	
	0	

Radio Brightness is a Proxy for Disk Mass and Size I. Why Radiative Transfer Modeling?

Source distance

Opacity

(sub)millimeter flux

Disk temperature

For Embedded Disks, Envelope Matters I. Why Radiative Transfer Modeling?

Radiative Transfer Forward Modeling I. Why Radiative Transfer Modeling?

III. Substructures: Witnessing Planet Formation in Embedded Disks?

	HOPS-65	HOPS-124
2		0
72		
	0 HOPS-163	°
	0	

Modeling Embedded Disks in Orion **II. Disk Demographics: The Environment of Planet Formation**

- PI of 5,000,000 core-hour allocation to model 100 single protostars in the VANDAM: Orion survey with NSF XSEDE supercomputers Largest full radiative transfer modeling sample, to-date

The Initial Mass Budget for Planet Formation II. Disk Demographics: The Environment of Planet Formation

Charbon at al in prep.

Orion Embedded Disks

Taurus Embedded Disks

 10^{0}

Taurus Protoplanetary Disks with RT

 10^{1}

Disk Mass (M_{\oplus})

Taurus Protoplanetary Disks with RT + Size Constraint

 10^{2}

 10^{3}

Why the difference in disk masses? II. Disk Demographics: The Environment of Planet Formation

Why the difference in disk masses? II. Disk Demographics: The Environment of Planet Formation

How large are protostellar disks? II. Disk Demographics: The Environment of Planet Formation

 10^{2}

Disk Radius (au)

Orion Protostars Taurus Class IIs Chameleon Class IIs Lupus Class IIs ONC Class IIs Ophiuchus Class IIs Upper Sco Class IIs

Warning!

Not all disk radii measured in the same way.

III. Substructures: Witnessing Planet Formation in Embedded Disks?

	HOPS-65	HOPS-124
5		0
		-
	0	o
7	HOPS-163	
	-	
Sec. 1	Sector Marks	
See.	0	

A Diversity of Substructures III. Substructures: Witnessing Planet Formation in Embedded Disks?

Sheehan, et al. 2020

Segura-Cox et al. 2020

≤ 2c

-17.5 -3:

Sheehan et al. 2020

HL Tau, WL 17, GY 91, DG Tau B, [BHB2007] 1

IRS 63 L1527, L1489, HH 111 VLA 1

Sheehan et al. 2020

Large Cavities = Young Binaries? **III. Substructures: Witnessing Planet Formation in Embedded Disks?**

Sheehan, et al. 2020

Large Cavities = Young Binaries? **III. Substructures: Witnessing Planet Formation in Embedded Disks?**

Sheehan et al. 2020

Large Cavities = Young Binaries? **III. Substructures: Witnessing Planet Formation in Embedded Disks?**

III. Substructures: Witnessing Planet Formation in Embedded Disks?

1	HOPS-65	HOPS-124
5		0
	0	•
7	HOPS-163	
	-	
100		
	0	