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Figure 2. 890 µm continuum images of the 61 Lupus disks detected in our ALMA Cycle 2 program (this excludes Sz 82, which

was observed by Cleeves et al., in prep), ordered by decreasing continuum flux density (as reported in Table 2). Images are

2
00⇥2

00
and the typical beam size is shown in the first panel.
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ALMA enables disc demographics

Lupus (62 disks) Ansdell+ 2016

! Ori (37) 
Ansdell+ 2017

 Cha I (66) Pascucci+ 2016

 Upper Sco I 
(58) Barenfeld+ 

2016

0 0, respectively, the median values from the sources that
are detected.

To visualize the goodness of the fits, we compare the best-fit
model (solid line) to the real component of the observed
visibilities (filled circles) as a function of projected baseline
length (UV distance); see Figure 4 as an example (Figures 4
(b)–(f) are available only in the electronic version). In these
figures all visibilities are recentered to the continuum centroids
found with uvmodelfit, each visibility point is the average of the
visibilities within a 30 kλ range, and the error bars are the
standard deviation divided by -N 1 , where N is the number
of visibility points in the same range. About half of the detected
sources have spatially resolved emission, as evidenced by
visibilities that decline in amplitude with increasing UV
distance. Among them, J10563044–7711393 and
J10581677–7717170 have resolved dust cavities; hence, the
Gaussian fit discussed above does not provide a good estimate
for the source flux density. For these two sources we compute

flux densities within the 3σ contour in the deconvolved
image;20 see Figure 5. J10581677–7717170 is a known
transition disk with an estimated dust cavity of ∼30 au in
radius (Kim et al. 2009). On the contrary, J10563044–7711393
has not been classified as a transition disk based on its infrared
photometry, but a Spitzer/IRS spectrum could not be extracted
for this source due to its faintness (Manoj et al. 2011). The
radius of both cavities is ∼45 au as measured from the images
and from the location of the first null in the visibility plot (see
Equation(A9) in Hughes et al. 2007).
Overall, we have identified two sources with dust disk

cavities, 32 sources whose millimeter emission is resolved
(elliptical Gaussian model), 32 sources with unresolved
millimeter emission (point source model), and 27 sources with
too faint or absent millimeter emission to be detected in our

Figure 3. ALMA 887 μm continuum dirty images for our ChamaeleonI sources. The pixel scale is 0 075. Note that source flux densities and upper limits were
computed from a fit to the visibility data and not from these images; see Section 4 for details.

(An extended version of this figure is available.)

20 We remind the reader that J10581677–7717170 was one of the sources that
required self-calibration (see Section 3); hence, the flux density is computed on
the final phase- and amplitude-calibrated image.
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Figure 1. Synthesized images of the 1.33 mm continuum with a Briggs weighting of robust = 0.5. The images are displayed
in order of decreasing mm flux, from the top left panel to the bottom right panel, and are scaled to highlight the weaker outer
emission. The beam for each disk is shown in the left corner of each panel.

Figure 2. Radial intensity profiles (black lines) along disk major axis for the 12 selected disks with dust substructures, as the
same order of Figure 1. The fitted Gaussian profile is shown in red to highlight the disk substructures, except for CIDA 9 and
IP Tau, which have deep inner cavities. The 1� noise level is shown in dashed line.

nentially tapered power-law, which reproduces the os-
cillation pattern in the visibility profile (Andrews et al.
2012; Hogerheijde et al. 2016; Zhang et al. 2016) and
better fits the data (with two more free parameters).
The revised model is then described as:

I(r) = A
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where rt is the transition radius, � is the surface bright-
ness gradient index, and � is the exponentially tapered
index. The model visibilities are then created by Fourier
transforming the disk model intensity profile using the
publicly available code Galario (Tazzari et al. 2018).
Fitting the model visibilities to the data visibilities is

later performed with the emcee
1 package (Foreman-

Mackey et al. 2013), in which a Markov chain Monte
Carlo (MCMC) method is used to explore the optimal
value of free parameters.
Our choice of component type and number in the

model intensity profile for each disk is guided by the
observed radial profile along the disk major axis (Fig-
ure 2). A resolved ring or emission bump is modeled
as a Gaussian ring component. The initial guesses for
the amplitude, location and width of each component
are also inferred from the radial profiles. The disk incli-
nation angle (i), the disk position angle (PA), and the
position o↵sets from the phase center (�↵ and ��) are

1
https://pypi.org/project/emcee/

Taurus,

Long + 2018
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Figure 2. 890 µm continuum images of the 61 Lupus disks detected in our ALMA Cycle 2 program (this excludes Sz 82, which

was observed by Cleeves et al., in prep), ordered by decreasing continuum flux density (as reported in Table 2). Images are
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Fig. 1.— Aperture synthesis images of the continuum emission towards the young star CYTau, observed at wavelengths of 1.3, 2.8, and
7.1 mm. Each panel encompasses a 2.500⇥2.500 region (350 AU in size at the adopted distance), with contours drawn at 3� intervals, where
� is the RMS noise level in each map (see Table 3).
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Fig. 2.— Aperture synthesis images of the continuum emission towards the young star DoAr 25, observed at wavelengths of 0.9, 2.8, 8.0,
and 9.8 mm. Each panel encompasses a 2.800 ⇥ 2.700 region (350 AU in size at the adopted distance), with contours drawn at 3� intervals,
where � is the RMS noise level in each map (see Table 4).

source photometry can be found in Table 3, from these
measurements we infer an spectral index for CYTau from
1.3 to 7.1 mm of ↵ = 2.6.
The observations at 5 cm were used to estimate the

contribution from processes other than thermal dust
emission at 7.1 mm (e.g., chromospheric activity or ther-
mal bremsstrahlung from photoevaporative disk winds
driven by the central protostar; Mundy et al. 1993; Pas-
cucci et al. 2011), which needs to be taken into account
when modeling the dust emission from the disk. How-
ever, CYTauis not detected at 5 cm, thus we take the 3�
upper limit of 20 µJy and estimate the maximum possi-
ble contamination at 7.1 mm by assuming optically-thick
free-free emission with spherical symmetry, for which the
emission as a function of frequency, ⌫, is proportional to
S⌫ / ⌫0.6 (Reynolds 1986). The maximum contamina-
tion at 7.1 mm thus corresponds to ⇠ 60 µJy. We note
that the probable source of any such contamination will
arise from very near the protostar, and would appear as
an unresolved point source in the 7.1 mm data. Based on
the 7.1 mm data themselves, using uv-distances � 10 km
(corresponding to spatial scales smaller than ⇠ 0.1400),
we constrain any unresolved point source to have a flux
density of 74±9 µJy (some of which could be dust emis-
sion), consistent with our estimate of the potential con-
tamination extrapolated from 5 cm.

3.2. DoAr 25

Synthesized maps at 0.9, 2.8, 8.0 and 9.8 mm of the
continuum emission from CYTau are presented in Fig-
ure 2. Each map extends 2.800 ⇥ 2.800, corresponding to

350 AU at the adopted distance. Natural weighting was
used in the imaging at wavelengths of 8.0 mm, 9.8 mm,
and 5.0 cm, to maximize the sensitivity. Briggs weight-
ing with robust parameters of 0.7 and 0.3 were used for
imaging at wavelengths of 0.9 and 2.8 mm, respectively,
to optimize the resolution and sensitivity at these wave-
lengths. The resulting image properties and source pho-
tometry can be found in Table 4, from these measure-
ments we infer an spectral index for DoAr 25 from 0.9 to
9.8 mm of ↵ = 2.8.
As for CYTau, the observations at 5 cm from DoAr 25

were used to estimate the contribution from other than
thermal dust emission at 8.0 and 9.8 mm. In the case
of DoAr 25, � = 5 cm emission is detected at a level of
6� coincident with the star, with an integrated flux den-
sity of 50 ± 13 µJy. Assuming S⌫ / ⌫0.6 results in an
estimated contamination of 150±40 µJy at 8.0 mm, and
133± 35 µJy at 9.8 mm. A lower level of contamination
is derived based only in the 8.0 and 9.8 mm data with
uv-distances � 10 km (corresponding to spatial scales
smaller than ⇠ 0.1700): an unresolved point source flux
density of 68± 24 µJy is present in the 8.0 mm observa-
tions, while a flux density of 65±16 µJy is constrained at
9.8 mm. These estimates are consistent (within the er-
rorbars) with the extrapolation from 5 cm. However, we
adopt the most conservative value (the highest possible
contamination) in our analysis.

3.3. De-projected visibility profiles

In Figures 3 and 4, we show the real and imaginary
part of the visibility as a function of uv -distance (here-

• Do Ar 25 (Pérez 2015)

CY Tau

locations are given as [Ri−0 05, Ri+0 05], where Ri is the
center location derived from 1.3mm data for individual dust
rings. Priors on disk inclination and position angles are centered
at what was identified before (Long et al. 2018) with a range
of± 20°. The free parameters are sampled with 100 walkers and
5000 steps for each walker. Given the typical autocorrelation time

on the order of 102, these steps are sufficient to reach
convergence. The last 1000 steps are used to sample the posterior
distribution. The adopted parameters are taken as the peaks of
marginal posteriors, with uncertainties given by the 68%
confidence intervals (see Table 2; see also Tables A1–A3 in
Appendix A for the full list of parameters).

Figure 1. ALMA continuum images at 1.3 mm (Band 6; bottom panels) and 2.9 mm (Band 3; top panels) in brightness temperature calculated using the Rayleigh–
Jeans approximation, with identical synthesized beams for individual disks. The color scheme was applied with a power-law stretch to highlight the weak emission in
dust rings. Dust emission at the two wavelengths is very similar.

Figure 2. Deprojected and azimuthally averaged brightness temperature profiles in logarithmic scale, using the Rayleigh–Jeans approximation. The disk inclination
and position angles used in the deprojection are adopted from Long et al. (2018). Light shaded regions show the 1σ scatter divided by the square root of the number of
beams spanning the full azimuthal angle at each radial bin. Each prominent dust ring is highlighted with a dashed line and a label denoting the ring location. Reff,95%
from model fittings are plotted as dotted lines with corresponding colors (see more discussions about disk radius comparison in Section 3.1.1).
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source photometry can be found in Table 3, from these
measurements we infer an spectral index for CYTau from
1.3 to 7.1 mm of ↵ = 2.6.
The observations at 5 cm were used to estimate the

contribution from processes other than thermal dust
emission at 7.1 mm (e.g., chromospheric activity or ther-
mal bremsstrahlung from photoevaporative disk winds
driven by the central protostar; Mundy et al. 1993; Pas-
cucci et al. 2011), which needs to be taken into account
when modeling the dust emission from the disk. How-
ever, CYTauis not detected at 5 cm, thus we take the 3�
upper limit of 20 µJy and estimate the maximum possi-
ble contamination at 7.1 mm by assuming optically-thick
free-free emission with spherical symmetry, for which the
emission as a function of frequency, ⌫, is proportional to
S⌫ / ⌫0.6 (Reynolds 1986). The maximum contamina-
tion at 7.1 mm thus corresponds to ⇠ 60 µJy. We note
that the probable source of any such contamination will
arise from very near the protostar, and would appear as
an unresolved point source in the 7.1 mm data. Based on
the 7.1 mm data themselves, using uv-distances � 10 km
(corresponding to spatial scales smaller than ⇠ 0.1400),
we constrain any unresolved point source to have a flux
density of 74±9 µJy (some of which could be dust emis-
sion), consistent with our estimate of the potential con-
tamination extrapolated from 5 cm.

3.2. DoAr 25

Synthesized maps at 0.9, 2.8, 8.0 and 9.8 mm of the
continuum emission from CYTau are presented in Fig-
ure 2. Each map extends 2.800 ⇥ 2.800, corresponding to

350 AU at the adopted distance. Natural weighting was
used in the imaging at wavelengths of 8.0 mm, 9.8 mm,
and 5.0 cm, to maximize the sensitivity. Briggs weight-
ing with robust parameters of 0.7 and 0.3 were used for
imaging at wavelengths of 0.9 and 2.8 mm, respectively,
to optimize the resolution and sensitivity at these wave-
lengths. The resulting image properties and source pho-
tometry can be found in Table 4, from these measure-
ments we infer an spectral index for DoAr 25 from 0.9 to
9.8 mm of ↵ = 2.8.
As for CYTau, the observations at 5 cm from DoAr 25

were used to estimate the contribution from other than
thermal dust emission at 8.0 and 9.8 mm. In the case
of DoAr 25, � = 5 cm emission is detected at a level of
6� coincident with the star, with an integrated flux den-
sity of 50 ± 13 µJy. Assuming S⌫ / ⌫0.6 results in an
estimated contamination of 150±40 µJy at 8.0 mm, and
133± 35 µJy at 9.8 mm. A lower level of contamination
is derived based only in the 8.0 and 9.8 mm data with
uv-distances � 10 km (corresponding to spatial scales
smaller than ⇠ 0.1700): an unresolved point source flux
density of 68± 24 µJy is present in the 8.0 mm observa-
tions, while a flux density of 65±16 µJy is constrained at
9.8 mm. These estimates are consistent (within the er-
rorbars) with the extrapolation from 5 cm. However, we
adopt the most conservative value (the highest possible
contamination) in our analysis.

3.3. De-projected visibility profiles

In Figures 3 and 4, we show the real and imaginary
part of the visibility as a function of uv -distance (here-
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locations are given as [Ri−0 05, Ri+0 05], where Ri is the
center location derived from 1.3mm data for individual dust
rings. Priors on disk inclination and position angles are centered
at what was identified before (Long et al. 2018) with a range
of± 20°. The free parameters are sampled with 100 walkers and
5000 steps for each walker. Given the typical autocorrelation time

on the order of 102, these steps are sufficient to reach
convergence. The last 1000 steps are used to sample the posterior
distribution. The adopted parameters are taken as the peaks of
marginal posteriors, with uncertainties given by the 68%
confidence intervals (see Table 2; see also Tables A1–A3 in
Appendix A for the full list of parameters).

Figure 1. ALMA continuum images at 1.3 mm (Band 6; bottom panels) and 2.9 mm (Band 3; top panels) in brightness temperature calculated using the Rayleigh–
Jeans approximation, with identical synthesized beams for individual disks. The color scheme was applied with a power-law stretch to highlight the weak emission in
dust rings. Dust emission at the two wavelengths is very similar.

Figure 2. Deprojected and azimuthally averaged brightness temperature profiles in logarithmic scale, using the Rayleigh–Jeans approximation. The disk inclination
and position angles used in the deprojection are adopted from Long et al. (2018). Light shaded regions show the 1σ scatter divided by the square root of the number of
beams spanning the full azimuthal angle at each radial bin. Each prominent dust ring is highlighted with a dashed line and a label denoting the ring location. Reff,95%
from model fittings are plotted as dotted lines with corresponding colors (see more discussions about disk radius comparison in Section 3.1.1).
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• suggestive of constant column-density

T Tauri and Herbig AeBe stars, from 0.1 to 3Me, although the
vast majority has M*1Me. The mean age of the sample is
about 1.5 Myr, although with a wide dispersion (the combined
posterior for all sample targets has a peak at log yr 6.21

*t »- ,
with 68.3%of the posterior probability within± 0.5 dex of that
value). There are no discernible differences in the age
distributions of the Lupus and SMA samples. The latter has a
M* distribution relatively biased toward the high end, but on
the mass range where both samples overlap ( M0.6 log *- --
0.2) their relative mass functions are indistinguishable.

In much of the following analysis, we will consider the joint
sample under the implicit assumption that the parent distribu-
tions of the host properties for sources in Lupus and the clusters
from which the SMA sample are drawn (primarily Taurus and
Ophiuchus) are the same. Ultimately that is an assumption that
ought to be revisited when complete samples of spatially
resolved continuum measurements are available for those
clusters.

5.3. Inferred Scaling Relations

In this section, we aim to quantify the properties of any
scaling relations between the millimeter continuum sizes and
luminosities (Section 5.3.1), and between those parameters and
the host star properties (Section 5.2) and accretion rates
(Section 5.3.3). For the sake of simplicity, we will interpret any
such scaling relations with a linear regression analysis—
thereby presuming power-law behavior when the variables of
interest are logarithmic—following the general mixture model
formulation described in detail by Kelly (2007).11 To
succinctly summarize, that regression analysis presumes a
relation

, 3y x� � e= + + ( )
where {x, y} are the variables of interest (with associated
covariances), � and � are the intercept (normalization) and
slope (power-law index) of the model scaling relation, and ε
represents an additional Gaussian “scatter” (in y) around the
mean relation (i.e., ε is drawn from a Gaussian distribution with
mean zero and standard deviation σ). The Kelly (2007)
methodology infers posterior samples on {�, �, σ} condi-
tioned on {x, y}, their covariance matrices, and any associated
censoring (limits). We have further simplified this analysis by
approximating the two-dimensional posteriors for any {x, y} as
(symmetric, elliptical) Gaussian distributions with representa-
tive means and covariances.

5.3.1. Size–Luminosity Relation: {Lmm, Reff}

Figure 4 shows the continuum size–luminosity scaling for
the Lupus and SMA samples, along with the corresponding
regression results. The dark shading marks the 68%confidence
interval region inferred for the joint sample; the lighter shading
includes the scatter term. We find a definitive size–luminosity
relationship in both the joint sample and its constituent sub-
samples. The regression parameters are listed in Table 1. The
inferred size–luminosity scaling is the same within the
uncertainties for either subsample or their union. Moreover,
we find that the slope of this relationship is identical regardless
of how Reff is defined. The same behavior is inferred if we

consider the radii that encircle 50, 68 (our adopted value), 80,
90, or 95%of Lmm; the normalization (intercept) changes
modestly, from 2.0� » for the 50%definition to 2.4 for the
95%definition.
These results verify the original Tripathi et al. (2017)

conclusions from the SMA sample alone, that there is a clear
and linear relationship between the continuum luminosity and
its emitting surface area, L Rmm eff

2µ . The Lupus sample
extends that relation almost an order of magnitude lower in
Lmm (albeit with considerable uncertainty on size estimates
there), suggesting that the original analysis from the SMA
sample was not substantially biased by either a lack of depth or
by combining targets from different cluster environments. It is
notable that the inferred scatter around the mean relation does
not appreciably shrink for the joint sample of 105 disks; the
implication is that the relation has some intrinsic dispersion
and/or higher dimensionality.
As discussed by Tripathi et al. (2017) (see also Section 6.1),

disks cannot populate the lower right corner of the Reff–Lmm
plane because emission levels saturate at sizes a factor of ∼3
below the mean relation when the continuum becomes optically
thick. There is no obvious physical reason why the region
above the mean relation should be depopulated, but it is worth
considering two potential selection effects. First is the
possibility that we have excluded large, low-surface brightness
disks in the Lupus sample because of the sensitivity criterion in
Section 3 (i.e., the continuum must be firmly detected). This
can be ruled out. For any reasonable brightness profile (Nuker
profiles with a range of gradient parameters), the Ansdell et al.
(2016) ALMA survey is sensitive enough that we would have
included any target with Reff values (at least) 10×larger than
the mean size–luminosity relation. A second, more subtle,
possibility is that the disks that populate the upper left of the
size–luminosity plane were excluded from the Ansdell
et al.sample because they have negligible (optically thin)

Figure 4. Millimeter continuum size–luminosity relationship. Symbols are
as in Figure 3. Error bars mark the 68%confidence intervals; upper limits
(at 95%confidence) are marked with gray arrows. The dark shaded region
marks the 68%confidence interval on the scaling relation from the linear
regression analysis on the joint sample. The lighter shaded region marks the
same behavior with the additional scatter term (σ) folded in.

11 We use the same algorithms, but in software modified for python by
J.Meyers (https://github.com/jmeyers314/linmix).
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about 1.5 Myr, although with a wide dispersion (the combined
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with 68.3%of the posterior probability within± 0.5 dex of that
value). There are no discernible differences in the age
distributions of the Lupus and SMA samples. The latter has a
M* distribution relatively biased toward the high end, but on
the mass range where both samples overlap ( M0.6 log *- --
0.2) their relative mass functions are indistinguishable.

In much of the following analysis, we will consider the joint
sample under the implicit assumption that the parent distribu-
tions of the host properties for sources in Lupus and the clusters
from which the SMA sample are drawn (primarily Taurus and
Ophiuchus) are the same. Ultimately that is an assumption that
ought to be revisited when complete samples of spatially
resolved continuum measurements are available for those
clusters.

5.3. Inferred Scaling Relations

In this section, we aim to quantify the properties of any
scaling relations between the millimeter continuum sizes and
luminosities (Section 5.3.1), and between those parameters and
the host star properties (Section 5.2) and accretion rates
(Section 5.3.3). For the sake of simplicity, we will interpret any
such scaling relations with a linear regression analysis—
thereby presuming power-law behavior when the variables of
interest are logarithmic—following the general mixture model
formulation described in detail by Kelly (2007).11 To
succinctly summarize, that regression analysis presumes a
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where {x, y} are the variables of interest (with associated
covariances), � and � are the intercept (normalization) and
slope (power-law index) of the model scaling relation, and ε
represents an additional Gaussian “scatter” (in y) around the
mean relation (i.e., ε is drawn from a Gaussian distribution with
mean zero and standard deviation σ). The Kelly (2007)
methodology infers posterior samples on {�, �, σ} condi-
tioned on {x, y}, their covariance matrices, and any associated
censoring (limits). We have further simplified this analysis by
approximating the two-dimensional posteriors for any {x, y} as
(symmetric, elliptical) Gaussian distributions with representa-
tive means and covariances.

5.3.1. Size–Luminosity Relation: {Lmm, Reff}

Figure 4 shows the continuum size–luminosity scaling for
the Lupus and SMA samples, along with the corresponding
regression results. The dark shading marks the 68%confidence
interval region inferred for the joint sample; the lighter shading
includes the scatter term. We find a definitive size–luminosity
relationship in both the joint sample and its constituent sub-
samples. The regression parameters are listed in Table 1. The
inferred size–luminosity scaling is the same within the
uncertainties for either subsample or their union. Moreover,
we find that the slope of this relationship is identical regardless
of how Reff is defined. The same behavior is inferred if we

consider the radii that encircle 50, 68 (our adopted value), 80,
90, or 95%of Lmm; the normalization (intercept) changes
modestly, from 2.0� » for the 50%definition to 2.4 for the
95%definition.
These results verify the original Tripathi et al. (2017)

conclusions from the SMA sample alone, that there is a clear
and linear relationship between the continuum luminosity and
its emitting surface area, L Rmm eff

2µ . The Lupus sample
extends that relation almost an order of magnitude lower in
Lmm (albeit with considerable uncertainty on size estimates
there), suggesting that the original analysis from the SMA
sample was not substantially biased by either a lack of depth or
by combining targets from different cluster environments. It is
notable that the inferred scatter around the mean relation does
not appreciably shrink for the joint sample of 105 disks; the
implication is that the relation has some intrinsic dispersion
and/or higher dimensionality.
As discussed by Tripathi et al. (2017) (see also Section 6.1),

disks cannot populate the lower right corner of the Reff–Lmm
plane because emission levels saturate at sizes a factor of ∼3
below the mean relation when the continuum becomes optically
thick. There is no obvious physical reason why the region
above the mean relation should be depopulated, but it is worth
considering two potential selection effects. First is the
possibility that we have excluded large, low-surface brightness
disks in the Lupus sample because of the sensitivity criterion in
Section 3 (i.e., the continuum must be firmly detected). This
can be ruled out. For any reasonable brightness profile (Nuker
profiles with a range of gradient parameters), the Ansdell et al.
(2016) ALMA survey is sensitive enough that we would have
included any target with Reff values (at least) 10×larger than
the mean size–luminosity relation. A second, more subtle,
possibility is that the disks that populate the upper left of the
size–luminosity plane were excluded from the Ansdell
et al.sample because they have negligible (optically thin)
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as in Figure 3. Error bars mark the 68%confidence intervals; upper limits
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from which the SMA sample are drawn (primarily Taurus and
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mean relation (i.e., ε is drawn from a Gaussian distribution with
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uncertainties for either subsample or their union. Moreover,
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not appreciably shrink for the joint sample of 105 disks; the
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below the mean relation when the continuum becomes optically
thick. There is no obvious physical reason why the region
above the mean relation should be depopulated, but it is worth
considering two potential selection effects. First is the
possibility that we have excluded large, low-surface brightness
disks in the Lupus sample because of the sensitivity criterion in
Section 3 (i.e., the continuum must be firmly detected). This
can be ruled out. For any reasonable brightness profile (Nuker
profiles with a range of gradient parameters), the Ansdell et al.
(2016) ALMA survey is sensitive enough that we would have
included any target with Reff values (at least) 10×larger than
the mean size–luminosity relation. A second, more subtle,
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Table 4. Summary of demographic properties: radii and optically thick
fraction.

_ '68 '68/'68,0.9mm F F/F0.9mm

(mm) (au)

0.9 mm 57.11 ± 8.01 1.00 0.71 ± 0.06 1.00

1.3 mm 54.84 ± 6.72 0.96 ± 0.12 0.49 ± 0.05 0.69 ± 0.07

3.1 mm 51.75 ± 6.48 0.91 ± 0.11 0.34 ± 0.06 0.48 ± 0.08

Note. The values quoted for '68 and F are the means of the sample; their
uncertainties are the standard error on the mean.

in most cases they correspond to the Gaussian fits (represented in
Figure 4 with smaller filled circles), which we employed for the discs
with noisier observations. The 1.3 mm radii measurements for these
discs are compatible with the 0.9 mm radii within 1f and are likely
due to the fainter nature of their emission. We highlight that for
many discs with high signal-to-noise observations (which typically
have been fitted with the modified self-similar profile), the radius
is essentially constant across wavelengths. This can be seen even
before modelling, just by comparing the visibility profiles, which
almost perfectly overlap in many cases. If we compute the mean
slope only for the sub-sample of discs that indeed have a positive
size-frequency correlation, we obtain

log
✓
'68
au

◆
= const. + (0.16 ± +0.03) log

⇣ a

GHz

⌘
(8)

which is steeper than the mean for the whole sample and not com-
patible with a flat size-frequency relation.

5.2 Constraints on the optical depth

To quantify how much of the disc emission can be attributed to
optically thick regions it is useful to introduce a new disc-averaged
quantity, the optically thick fraction F , defined as the ratio between
the integrated luminosity enclosed within dG (G being the fraction
defined in Sect. 3.2) and the luminosity that would be emitted by a
completely optically thick disc with a size dG :

F =
G�a

2c cos(8)
Ø dG

0 ⌫a ())d03d0
=

G!mm

2c
Ø dG

0 ⌫a ()d)d03d0
(9)

where !mm is inferred from the visibility fits and we set G = 0.68.
For the dust temperature )d we use the empirical parameterisation
by Andrews et al. (2013):

)d = )0

✓
!¢
!�

◆0.25 ✓
'

'0

◆�@
, (10)

where the actual values @ = 0.5, )0 = 30 K '0 = 10 au were
recently calibrated by Andrews et al. (2018b) using ALMA and
SMA observations of discs in the Lupus and Taurus region. The
stellar luminosities used for the Lupus sources are in Table 1. We
ensure that the dust temperature does not reach unrealistically low
values below the threshold of )floor = 7 K induced by the typical
interstellar radiation field in low mas star forming regions by using
an e�ective dust temperature equal to )4 = )4

d + )4
floor. Note that

F should not be regarded as the average optical depth of the disc
because, by construction, it lies between zero and one. Nevertheless
it is a measure of the dominance or otherwise of optically thick
emission in the integrated flux.

We highlight that F is not directly measurable from the ob-
servations, as it requires knowledge of the size of the disc (which

we obtained through the visibility fits) and the assumption of a
dust temperature profile. Compared to a simple measurement of
the integrated flux (�a), F is intrinsically more model-dependent.
However, it is a useful observational quantity that can be determined
robustly from spatially resolved observations and with reasonable
assumptions on the dust temperature and, advantageously compared
to �a , leverages the information on the spatial distribution of the
disc brightness. The lack of spatial resolution that a�ected sub-
mm/mm observations until recent years made it rarely possible to
characterise discs through F . Here, aiming to take full advantage
of the resolving power of these ALMA observations, we will use F
to gain insight into the structure of discs.

Figure 5 summarises the distribution of optical depth fractions
that we derive at the three wavelengths. The left panel shows, for
each wavelength, F as a function of disc e�ective size. As expected,
the contribution of optically thick emission to the total integrated
flux decreases significantly at longer wavelengths, with median F
values decreasing from 0.71 ± 0.06 at 0.9 mm, to 0.49 ± 0.05 at
1.3 mm, to 0.34 ± 0.06 at 3.1 mm. Moreover, at 3.1 mm we notice
that there is a marked correlation for which the largest discs are
also those with lowest F . The right panel shows, for each disc,
F as a function of integrated flux at the three wavelengths, with
both quantities normalised to their values at 0.9 mm. To ease the
interpretation of the plot, measurements belonging to the same disc
are connected with a thin grey line. The plot shows that there is a
drop in optical depth at longer wavelengths.

5.3 Millimeter continuum size-luminosity relation

A correlation between the millimeter continuum disc sizes ('68)
and their flux at 0.9 mm was found by Tripathi et al. (2017) using
SMA observations of a sample of bright discs in the Taurus region,
and was later confirmed by Andrews et al. (2018a) using a larger
complete sample of discs in the Lupus region. The correlation that
they found, which is

log
✓
'68
au

◆
= (2.15±0.10)+ (0.51±0.06) log

"
�a

✓
3

140 pc

◆2
#

(11)

for the discs in the Lupus region, was interpreted as a constant
surface brightness (i.e., �a / '2) with an average optically thick
fraction of about 0.3. Here we revisit the size-luminosity correlation
in the context of the multi-wavelength observations that we obtained
at 0.9, 1.3 and 3.1 mm, looking for the presence of the same scaling
relation at 1.3 and 3.1 mm.

Figure 6 presents the Lupus discs radii ('68) against their
millimeter luminosity (re-scaled at the common distance of 150 pc)
measured at 0.9, 1.3, and 3.1 mm. To quantitatively characterise
the properties of the size-luminosity scaling relation, in the simple
assumption of a linear correlation in the logarithmic space (i.e.,
a power-law correlation in the linear space), we parametrise the
relation as

log
✓
'68
au

◆
= A + B log

"
�a

cos 8

✓
3

150 pc

◆2
#
+ n (12)

where A is the intercept (normalisation), B is the slope (power-
law index) of the relation, and n is a Gaussian scatter term along
the y axis ('68, in this case). The implications of the cos(8) term
are discussed at the end of this Section. We perform a Bayesian
linear regression with a mixture of 2 Gaussian generative models
following the method by Kelly (2007) and using the implementation
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To quantify how much of the disc emission can be attributed to
optically thick regions it is useful to introduce a new disc-averaged
quantity, the optically thick fraction F , defined as the ratio between
the integrated luminosity enclosed within dG (G being the fraction
defined in Sect. 3.2) and the luminosity that would be emitted by a
completely optically thick disc with a size dG :
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where !mm is inferred from the visibility fits and we set G = 0.68.
For the dust temperature )d we use the empirical parameterisation
by Andrews et al. (2013):
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where the actual values @ = 0.5, )0 = 30 K '0 = 10 au were
recently calibrated by Andrews et al. (2018b) using ALMA and
SMA observations of discs in the Lupus and Taurus region. The
stellar luminosities used for the Lupus sources are in Table 1. We
ensure that the dust temperature does not reach unrealistically low
values below the threshold of )floor = 7 K induced by the typical
interstellar radiation field in low mas star forming regions by using
an e�ective dust temperature equal to )4 = )4

d + )4
floor. Note that

F should not be regarded as the average optical depth of the disc
because, by construction, it lies between zero and one. Nevertheless
it is a measure of the dominance or otherwise of optically thick
emission in the integrated flux.

We highlight that F is not directly measurable from the ob-
servations, as it requires knowledge of the size of the disc (which

we obtained through the visibility fits) and the assumption of a
dust temperature profile. Compared to a simple measurement of
the integrated flux (�a), F is intrinsically more model-dependent.
However, it is a useful observational quantity that can be determined
robustly from spatially resolved observations and with reasonable
assumptions on the dust temperature and, advantageously compared
to �a , leverages the information on the spatial distribution of the
disc brightness. The lack of spatial resolution that a�ected sub-
mm/mm observations until recent years made it rarely possible to
characterise discs through F . Here, aiming to take full advantage
of the resolving power of these ALMA observations, we will use F
to gain insight into the structure of discs.

Figure 5 summarises the distribution of optical depth fractions
that we derive at the three wavelengths. The left panel shows, for
each wavelength, F as a function of disc e�ective size. As expected,
the contribution of optically thick emission to the total integrated
flux decreases significantly at longer wavelengths, with median F
values decreasing from 0.71 ± 0.06 at 0.9 mm, to 0.49 ± 0.05 at
1.3 mm, to 0.34 ± 0.06 at 3.1 mm. Moreover, at 3.1 mm we notice
that there is a marked correlation for which the largest discs are
also those with lowest F . The right panel shows, for each disc,
F as a function of integrated flux at the three wavelengths, with
both quantities normalised to their values at 0.9 mm. To ease the
interpretation of the plot, measurements belonging to the same disc
are connected with a thin grey line. The plot shows that there is a
drop in optical depth at longer wavelengths.

5.3 Millimeter continuum size-luminosity relation

A correlation between the millimeter continuum disc sizes ('68)
and their flux at 0.9 mm was found by Tripathi et al. (2017) using
SMA observations of a sample of bright discs in the Taurus region,
and was later confirmed by Andrews et al. (2018a) using a larger
complete sample of discs in the Lupus region. The correlation that
they found, which is
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for the discs in the Lupus region, was interpreted as a constant
surface brightness (i.e., �a / '2) with an average optically thick
fraction of about 0.3. Here we revisit the size-luminosity correlation
in the context of the multi-wavelength observations that we obtained
at 0.9, 1.3 and 3.1 mm, looking for the presence of the same scaling
relation at 1.3 and 3.1 mm.

Figure 6 presents the Lupus discs radii ('68) against their
millimeter luminosity (re-scaled at the common distance of 150 pc)
measured at 0.9, 1.3, and 3.1 mm. To quantitatively characterise
the properties of the size-luminosity scaling relation, in the simple
assumption of a linear correlation in the logarithmic space (i.e.,
a power-law correlation in the linear space), we parametrise the
relation as
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where A is the intercept (normalisation), B is the slope (power-
law index) of the relation, and n is a Gaussian scatter term along
the y axis ('68, in this case). The implications of the cos(8) term
are discussed at the end of this Section. We perform a Bayesian
linear regression with a mixture of 2 Gaussian generative models
following the method by Kelly (2007) and using the implementation
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Table 4. Summary of demographic properties: radii and optically thick
fraction.

_ '68 '68/'68,0.9mm F F/F0.9mm

(mm) (au)

0.9 mm 57.11 ± 8.01 1.00 0.71 ± 0.06 1.00

1.3 mm 54.84 ± 6.72 0.96 ± 0.12 0.49 ± 0.05 0.69 ± 0.07

3.1 mm 51.75 ± 6.48 0.91 ± 0.11 0.34 ± 0.06 0.48 ± 0.08

Note. The values quoted for '68 and F are the means of the sample; their
uncertainties are the standard error on the mean.

in most cases they correspond to the Gaussian fits (represented in
Figure 4 with smaller filled circles), which we employed for the discs
with noisier observations. The 1.3 mm radii measurements for these
discs are compatible with the 0.9 mm radii within 1f and are likely
due to the fainter nature of their emission. We highlight that for
many discs with high signal-to-noise observations (which typically
have been fitted with the modified self-similar profile), the radius
is essentially constant across wavelengths. This can be seen even
before modelling, just by comparing the visibility profiles, which
almost perfectly overlap in many cases. If we compute the mean
slope only for the sub-sample of discs that indeed have a positive
size-frequency correlation, we obtain
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which is steeper than the mean for the whole sample and not com-
patible with a flat size-frequency relation.

5.2 Constraints on the optical depth

To quantify how much of the disc emission can be attributed to
optically thick regions it is useful to introduce a new disc-averaged
quantity, the optically thick fraction F , defined as the ratio between
the integrated luminosity enclosed within dG (G being the fraction
defined in Sect. 3.2) and the luminosity that would be emitted by a
completely optically thick disc with a size dG :
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where !mm is inferred from the visibility fits and we set G = 0.68.
For the dust temperature )d we use the empirical parameterisation
by Andrews et al. (2013):
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where the actual values @ = 0.5, )0 = 30 K '0 = 10 au were
recently calibrated by Andrews et al. (2018b) using ALMA and
SMA observations of discs in the Lupus and Taurus region. The
stellar luminosities used for the Lupus sources are in Table 1. We
ensure that the dust temperature does not reach unrealistically low
values below the threshold of )floor = 7 K induced by the typical
interstellar radiation field in low mas star forming regions by using
an e�ective dust temperature equal to )4 = )4

d + )4
floor. Note that

F should not be regarded as the average optical depth of the disc
because, by construction, it lies between zero and one. Nevertheless
it is a measure of the dominance or otherwise of optically thick
emission in the integrated flux.

We highlight that F is not directly measurable from the ob-
servations, as it requires knowledge of the size of the disc (which

we obtained through the visibility fits) and the assumption of a
dust temperature profile. Compared to a simple measurement of
the integrated flux (�a), F is intrinsically more model-dependent.
However, it is a useful observational quantity that can be determined
robustly from spatially resolved observations and with reasonable
assumptions on the dust temperature and, advantageously compared
to �a , leverages the information on the spatial distribution of the
disc brightness. The lack of spatial resolution that a�ected sub-
mm/mm observations until recent years made it rarely possible to
characterise discs through F . Here, aiming to take full advantage
of the resolving power of these ALMA observations, we will use F
to gain insight into the structure of discs.

Figure 5 summarises the distribution of optical depth fractions
that we derive at the three wavelengths. The left panel shows, for
each wavelength, F as a function of disc e�ective size. As expected,
the contribution of optically thick emission to the total integrated
flux decreases significantly at longer wavelengths, with median F
values decreasing from 0.71 ± 0.06 at 0.9 mm, to 0.49 ± 0.05 at
1.3 mm, to 0.34 ± 0.06 at 3.1 mm. Moreover, at 3.1 mm we notice
that there is a marked correlation for which the largest discs are
also those with lowest F . The right panel shows, for each disc,
F as a function of integrated flux at the three wavelengths, with
both quantities normalised to their values at 0.9 mm. To ease the
interpretation of the plot, measurements belonging to the same disc
are connected with a thin grey line. The plot shows that there is a
drop in optical depth at longer wavelengths.

5.3 Millimeter continuum size-luminosity relation

A correlation between the millimeter continuum disc sizes ('68)
and their flux at 0.9 mm was found by Tripathi et al. (2017) using
SMA observations of a sample of bright discs in the Taurus region,
and was later confirmed by Andrews et al. (2018a) using a larger
complete sample of discs in the Lupus region. The correlation that
they found, which is
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for the discs in the Lupus region, was interpreted as a constant
surface brightness (i.e., �a / '2) with an average optically thick
fraction of about 0.3. Here we revisit the size-luminosity correlation
in the context of the multi-wavelength observations that we obtained
at 0.9, 1.3 and 3.1 mm, looking for the presence of the same scaling
relation at 1.3 and 3.1 mm.

Figure 6 presents the Lupus discs radii ('68) against their
millimeter luminosity (re-scaled at the common distance of 150 pc)
measured at 0.9, 1.3, and 3.1 mm. To quantitatively characterise
the properties of the size-luminosity scaling relation, in the simple
assumption of a linear correlation in the logarithmic space (i.e.,
a power-law correlation in the linear space), we parametrise the
relation as
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where A is the intercept (normalisation), B is the slope (power-
law index) of the relation, and n is a Gaussian scatter term along
the y axis ('68, in this case). The implications of the cos(8) term
are discussed at the end of this Section. We perform a Bayesian
linear regression with a mixture of 2 Gaussian generative models
following the method by Kelly (2007) and using the implementation
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with noisier observations. The 1.3 mm radii measurements for these
discs are compatible with the 0.9 mm radii within 1f and are likely
due to the fainter nature of their emission. We highlight that for
many discs with high signal-to-noise observations (which typically
have been fitted with the modified self-similar profile), the radius
is essentially constant across wavelengths. This can be seen even
before modelling, just by comparing the visibility profiles, which
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To quantify how much of the disc emission can be attributed to
optically thick regions it is useful to introduce a new disc-averaged
quantity, the optically thick fraction F , defined as the ratio between
the integrated luminosity enclosed within dG (G being the fraction
defined in Sect. 3.2) and the luminosity that would be emitted by a
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where the actual values @ = 0.5, )0 = 30 K '0 = 10 au were
recently calibrated by Andrews et al. (2018b) using ALMA and
SMA observations of discs in the Lupus and Taurus region. The
stellar luminosities used for the Lupus sources are in Table 1. We
ensure that the dust temperature does not reach unrealistically low
values below the threshold of )floor = 7 K induced by the typical
interstellar radiation field in low mas star forming regions by using
an e�ective dust temperature equal to )4 = )4
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floor. Note that

F should not be regarded as the average optical depth of the disc
because, by construction, it lies between zero and one. Nevertheless
it is a measure of the dominance or otherwise of optically thick
emission in the integrated flux.

We highlight that F is not directly measurable from the ob-
servations, as it requires knowledge of the size of the disc (which

we obtained through the visibility fits) and the assumption of a
dust temperature profile. Compared to a simple measurement of
the integrated flux (�a), F is intrinsically more model-dependent.
However, it is a useful observational quantity that can be determined
robustly from spatially resolved observations and with reasonable
assumptions on the dust temperature and, advantageously compared
to �a , leverages the information on the spatial distribution of the
disc brightness. The lack of spatial resolution that a�ected sub-
mm/mm observations until recent years made it rarely possible to
characterise discs through F . Here, aiming to take full advantage
of the resolving power of these ALMA observations, we will use F
to gain insight into the structure of discs.

Figure 5 summarises the distribution of optical depth fractions
that we derive at the three wavelengths. The left panel shows, for
each wavelength, F as a function of disc e�ective size. As expected,
the contribution of optically thick emission to the total integrated
flux decreases significantly at longer wavelengths, with median F
values decreasing from 0.71 ± 0.06 at 0.9 mm, to 0.49 ± 0.05 at
1.3 mm, to 0.34 ± 0.06 at 3.1 mm. Moreover, at 3.1 mm we notice
that there is a marked correlation for which the largest discs are
also those with lowest F . The right panel shows, for each disc,
F as a function of integrated flux at the three wavelengths, with
both quantities normalised to their values at 0.9 mm. To ease the
interpretation of the plot, measurements belonging to the same disc
are connected with a thin grey line. The plot shows that there is a
drop in optical depth at longer wavelengths.

5.3 Millimeter continuum size-luminosity relation

A correlation between the millimeter continuum disc sizes ('68)
and their flux at 0.9 mm was found by Tripathi et al. (2017) using
SMA observations of a sample of bright discs in the Taurus region,
and was later confirmed by Andrews et al. (2018a) using a larger
complete sample of discs in the Lupus region. The correlation that
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for the discs in the Lupus region, was interpreted as a constant
surface brightness (i.e., �a / '2) with an average optically thick
fraction of about 0.3. Here we revisit the size-luminosity correlation
in the context of the multi-wavelength observations that we obtained
at 0.9, 1.3 and 3.1 mm, looking for the presence of the same scaling
relation at 1.3 and 3.1 mm.

Figure 6 presents the Lupus discs radii ('68) against their
millimeter luminosity (re-scaled at the common distance of 150 pc)
measured at 0.9, 1.3, and 3.1 mm. To quantitatively characterise
the properties of the size-luminosity scaling relation, in the simple
assumption of a linear correlation in the logarithmic space (i.e.,
a power-law correlation in the linear space), we parametrise the
relation as
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where A is the intercept (normalisation), B is the slope (power-
law index) of the relation, and n is a Gaussian scatter term along
the y axis ('68, in this case). The implications of the cos(8) term
are discussed at the end of this Section. We perform a Bayesian
linear regression with a mixture of 2 Gaussian generative models
following the method by Kelly (2007) and using the implementation
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,

3
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Fig. 1.— Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On
the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows
illustrate the different velocities of the different grains. On the right hand side, we show the areas of the disk that can
be probed by the various techniques. The axis shows the logaritmic radial distance from the central star. The horizontal
bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and
instruments for at the typical distance of the nearest star forming regions.

of the disk could be in this regime, and the transition into the
Stokes drag regime might be important for trapping of dust
particles and the formation of planetesimals (e.g., Birnstiel
et al., 2010a; Laibe et al., 2012). For the observable par-
ticles discussed in this chapter, however, the particles can
always be assumed to be smaller than the mean free path
and are thus in the Epstein regime. An often used quantity
is the stopping time, or friction time, which is the charac-
teristic time scale for the acceleration or deceleration of the
dust particles ⌧s = mv/F , where m and v are the particle
mass and velocity, and F is the drag force. Even more useful
is the concept of the Stokes number, which in this context
is defined as

St = ⌦K ⌧s, (1)

a dimensionless number, which relates the stopping time
to the orbital period ⌦K. The concept of the Stokes num-
ber is useful because particles of different shapes, sizes, or
composition, or in a different environment behave aerody-
namically identical if they have the same Stokes number.

2.1.2. Radial drift

The simple concept of drag force leads to important im-
plications, the first of which, radial drift, was realized by
Weidenschilling (1977): an orbiting parcel of gas is in a
force balance between gravitational, centrifugal, and pres-

sure forces. The pressure gradient is generally pointing
outward because densities and temperatures are higher in
the inner disk. This additional pressure support results is a
slightly sub-Keplerian orbital velocity for the gas. In con-
trast, a freely orbiting dust particle feels only centrifugal
forces and gravity, and should therefore be in a Keplerian
orbit. The slight velocity difference between gas and an
embedded dust particle thus constitutes a head-wind, de-
celerating the dust particle, which consequently spirals to-
wards smaller radii. While this velocity difference is only a
small fraction of the total orbital velocity (a few per mille),
but, for St⇠1 particles, can reach in absolute terms values
of the order of 50 m s�1. The resulting maximum inward
drift velocity turns out to be the same value, meaning that
particles of different sizes acquire very different radial ve-
locities and that, at any given radius, dust of the right size
may be quickly moved towards the central star.

Nakagawa et al. (1986) investigated the equations of
motion for arbitrary gas to dust ratios. For the fiducial
value of 100 by mass, gas is dynamically dominating and
the classical results of Weidenschilling (1977) are recov-
ered, however for a decreasing ratio, the drag that the dust
exerts on the gas becomes more important, and eventually
may be reversed: dust would not drift inward and gas would
be pushed outward instead. Much lower gas-to-dust ratios,
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Data is public online: get it & use it!

- fluxes

- spectral indices

- dust masses

- disc sizes

- opt. depth fraction

github.com/mtazzari/galario
GALARIO

uv-plane 
analysis:

Multi-wavelength: 
(0.88, 1.3, 3.1 mm)

https://zenodo.org/record/4756381
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