

On the secular evolution of the ratio between gas and dust radii in protoplanetary discs:

TESTING THE EFFICIENCY OF RADIAL DRIFT

Toci Claudia claudia.toci@unimi.it Università degli Studi di Milano

Collaborators: Gíovanní Rosottí, Gíuseppe Lodato, Leonardo Testí, Leon Trapman

Special thanks: Richard Booth, Marco Tazzari and Alice Somigliana

Protoplanetary discs observations

Many observed bright targets are showing substructures in high resolution images of the dust continuum and in scattered light:

ALMA partnership, Nov. 2014

From: Andrews et al. 2020, many other works on these sources

Substructures

Dust grains trapped in a pressure maxima (Pinilla et al. 2012, Dullemond et al. 2018, Rosotti et al. 2020 +...) ALMA partnership, Nov. 2014

Induced without a pressure maxima, e.g. due to different opacity in different positions, snowlines (Stammler et al. 2017, ..)

Substructures

Dust grains trapped in a pressure maxima (Pinilla et al. 2012, Dullemond et al. 2018, Rosotti et al. 2020 +...)

Induced without a pressure maxima, e.g. due to different opacity in different positions, snowlines (Stammler et al. 2017, ..)

From: PhDcomics.com

Try to study how fast an inhabitant of planet Earth runs the 100 m:

Try to study how fast an inhabitant of planet Earth runs the 100 m:

Area	Men				Women				
	Time (s)	Wind (m/s)	Athlete	Nation	Time (s)	Wind (m/s)	Athlete	Nation	
Africa (records)	9.77	+1.2	Ferdinand Omanyala	Kenya	10.78	+1.6	Murielle Ahouré	Ivory Coast	
						-0.3	Marie-Josée Ta Lou		
Asia (records)	9.83	+0.9	Su Bingtian	China	10.79	0.0	Li Xuemei	China	
Europe (records)	9.80	+0.1	Marcell Jacobs	ltaly	10.73	+2.0	Christine Arron	France	
North, Central America and Caribbean (records)	9.58 WR	+0.9	Usain Bolt	🔀 Jamaica	10.49 WR	0.0 ^[a]	Florence Griffith-Joyner	United States	
Oceania (records)	9.93	+1.8	Patrick Johnson	🌉 Australia	11.11	+1.9	Melissa Breen	Mustralia	
South America (records)	10.00 ^[A]	+1.6	Robson da Silva	📀 Brazil	10.91	-0.2	Rosângela Santos	📀 Brazil	

From Wikipedia

Try to study how fast an inhabitant of planet Earth runs the 100 m:

Area	Men				Women				
	Time (s)	Wind (m/s)	Athlete	Nation	Time (s)	Wind (m/s)	Athlete	Nation	
Africa (records)	9.77	+1.2	Ferdinand Omanyala	Kenya	10.78	+1.6	Murielle Ahouré	Vory Coast	
						-0.3	Marie-Josée Ta Lou		
Asia (records)	9.83	+0.9	Su Bingtian	China	10.79	0.0	Li Xuemei	China	
Europe (records)	9.80	+0.1	Marcell Jacobs	Italy	10.73	+2.0	Christine Arron	France	
North, Central America and Caribbean (records)	9.58 WR	+0.9	Usain Bolt	🔀 Jamaica	10.49 WR	0.0 ^[a]	Florence Griffith-Joyner	United States	
Oceania (records)	9.93	+1.8	Patrick Johnson	Mustralia	11.11	+1.9	Melissa Breen	Australia	
South America (records)	10.00 ^[A]	+1.6	Robson da Silva	📀 Brazil	10.91	-0.2	Rosângela Santos	📀 Brazil	

Vs.

Average researcher (trained): 12-14 " Average researcher (untrained): 15-20 "

From Wikipedia and PHDcomics.com

Try to study how fast an inhabitant of planet Earth runs the 100 m:

Area	Men				Women				
	Time (s)	Wind (m/s)	Athlete	Nation	Time (s)	Wind (m/s)	Athlete	Nation	
Africa (records)	9.77	+1.2	Ferdinand Omanyala	Kenya	10.78	+1.6	Murielle Ahouré	Vory Coast	
						-0.3	Marie-Josée Ta Lou		
Asia (records)	9.83	+0.9	Su Bingtian	China	10.79	0.0	Li Xuemei	China	
Europe (records)	9.80	+0.1	Marcell Jacobs	Italy	10.73	+2.0	Christine Arron	France	
North, Central America and Caribbean (records)	9.58 WR	+0.9	Usain Bolt	🔀 Jamaica	10.49 WR	0.0 ^[a]	Florence Griffith-Joyner	United States	
Oceania (records)	9.93	+1.8	Patrick Johnson	Mustralia	11.11	+1.9	Melissa Breen	Australia	
South America (records)	10.00 ^[A]	+1.6	Robson da Silva	📀 Brazil	10.91	-0.2	Rosângela Santos	Srazil	

Vs.

Average researcher (trained): 12-14 " Average researcher (untrained): 15-20 "

Demographic studies!!!!!

From Wikipedia and PHDcomics.com

A large amount of information

Surveys of star forming regions investigate how disc properties vary with age and are a test-bed for disc evolution theories

Lower resolution
"High" statistics
Masses
Dust disc radii
Gas disc radii

A large amount of information (II)

Surveys of star forming regions investigate how disc properties vary with age and are a test-bed for disc evolution theories

Tazzari et al. 2020, Lupus survey: continuum 3 mm (3"x3") dust disc radii 10 -80 au

Unresolved substructures or smooth?

A large amount of information (II)

Surveys of star forming regions investigate how disc properties vary with age and are a test-bed for disc evolution theories

- dust disc radii 10 -80 au
- Gas disc radii (more difficult, time consuming, missing data) 20-200 au

Unresolved substructures or smooth?

Tazzari et al. 2020, Lupus survey: continuum 3 mm (3"x3") Ansdell et al. 2016, cycle 2 Lupus: CO isotopologues and 0,890 mm, (3"x3")

The global evolution of discs

To understand which is the mechanism that is governing disc evolution we need to find a tracer that is sensitive to the global evolution of the disc.

Radius evolution

Dust radii

Class 0/I unclear but otherwise shrinking observed

Evidence of viscous spreading?

Tentative evidence, but inhomogeneous sample

Excludes discs are highly viscous: observed discs are not large enough Data too sparse to confirm/reject that disc size increases with time

A large amount of information (III)

Surveys of star forming regions investigate how disc properties vary with age and are a test for disc evolution theories

• Rco/Rdust 2-4 in Lupus

 15% of the population Rco/Rd > 4

Lupus population evolve similarly and is in the same evolutionary stage?

What can we learn from dust radii?

- The value of the radius depends on the dust opacity (large grains) (Rosotti et al. 2019)
- Lupus discs have nearly identical dust radius if observed at different wavelengths (Tazzari et al. 2021, see Marco's talk)
- Smooth and compact models reproduce observed dust flux-Mdust relation. (Thripathi et al. 2018, Rosotti et al. 2019 a,b)

- Nearly identical radii
- R_{3mm} is ~90% R_{0.9mm}
- Substructures can be common only in bright discs (Banzatti et al. 2020, van der Marel & Muldersl 2021)

Disc evolution: dust

Decoupled dust feels the gas like a headwind: lose energy and angular momentum

• Large grains drifts towards the star (Weidenschilling 1977)

Open question: understand the role of radial drift

- Removes large grains
- Fast shrinking of the dust disc radii, eventually disc disappearing (timescale few 10⁵ yr) (Appelgren et al. 2020)
- Substructures can slow down radial drift due to dust trapping (e.g., Pinilla et al. 2012), but are not observed in compact discs surveys (e.g., Sanchis et al. 2021)

Physical question: how much dust drifts in discs?

Do we really have a problem with radial drift?

Physical question: how much dust drifts in discs?

Do we really have a problem with radial drift?

Physical question: how much dust drifts in discs?

Do we really have a problem with radial drift?

Studying only dust radii we cannot solve this question

What can we learn with gas radii?

Gas dominates in mass. The physical process governing its evolution is linked to the mechanism driving the accretion on the star:

What do we observe?

Gas disc size as a function of the time R_{co}

Enviromental evolution of CO Photodissociation, freeze-out, grain surface chemistry (see i.e. Trapman et al. 2020):

Rco

Gas radius (see i.e. Trapman et al. 2020): where CO is photodissociated

Viscous spreading Not so easy to "measure" (see i.e. Trapman et al. 2020)

Physical question: how much dust drifts in discs?

 We can use the secular evolution of the ratio between the dust and gas radii, Rco/Rdust, capable to break the degeneracy

Physical question: how much dust drifts in discs?

- We can use the secular evolution of the ratio between the dust and gas radii, Rco/Rdust, capable to break the degeneracy
- Follow up of Rosotti et al. 2019a,b (only dust sizes) testing how much dust drifts in synthetic population of discs with respect to the gas evolution

Our models

1D synthetic discs composed by gas and dust

- Gas: viscous evolution
- 2 populations of dust (large and small grains) implemented as Birnstiel et al. 2012
 - \rightarrow different dust to gas ratio each timestep (initially 100) NEW!
- Dust feedback considered (Laibe & Price 2014)
- Population evolved from 0-3 Myr
- Synthetic emission of CO lines with RADMC3D (Dullemond et al. 2012)
- Continuum 850 micron flux computed as in Rosotti et al. 2019 a, b $S_b(R) = B_v(T(R))[1 \exp(-\kappa_v \Sigma_d)]$

Rco Gas radius: 68% of the flux Rdust Dust radius: 68% of the flux B_v planck function k_v opacity

Toci et al. 2021

Initial conditions

Suite of models to probe the parameter space (No montecarlo), fixed stellar mass 1Msun

Coming soon: Initial conditions for populations of discs (Somigliana + 2021)

This work Rdust

Reference case: $M_0=0.1$ Msun, $R_c=10$ au

Dust radius R_{dust}

$\alpha = 10^{-4}, 10^{-3}$

• Dust radii decreases with time: radial drift is at play: dust radii becomes 20 -10 au after 1 Myr

$\alpha = 10^{-2}$

• Two phases of expansion: due to viscous spreading (grains still grow) and due to the opacity cliff

Toci et al. 2021

This work Rco

Reference case: $M_0=0.1$ Msun, $R_c=10$ au

Gas radius R_{CO}

- viscous spreading at play, but not so easy to see after 1 Myr ... initial faster growing for larger values of α
- Very large values for high viscosity $\boldsymbol{\alpha}$
- Surface density decreases → enhancement of the CO photodissociation

In agreement with Trapman et al. 2019,2020

This work Rco/Rdust

Reference case: $M_0=0.1$ Msun, $R_c=10$ au

Ratio R_{CO}/R_{dust}

- Value of the viscosity crucial
- Starts with a relatively high value (2)

Toci et al. 2021

 $\alpha = 10^{-4}, 10^{-3}$

Monothonically increases to >4

 $\alpha = \mathbf{10^{-2}}$

• Grows to 50 then decreases to 20

... in any case larger than 4

Secular evolution

How our models would appear if observed at a certain time?

no age spreading, no montecarlo

Note that we cannot cover the other parts of the plot (according to observations)

Secular evolution

How our models would appear if observed at a certain time?

Rdust < 60 Very large gas radii for all the values of the viscosity

Secular evolution

How our models would appear if observed at a certain time?

Very large dust radii high value of viscosity (opacity cliff)

Toci et al. 2021 Comparison with observations (Lupus)

Our models do not reproduce the observed ratio of $R_{\rm CO}$ / $R_{\rm dust}$ in Lupus survey

- Too large (>2-3 times) R_{CO} / R_{dust}
- Dust disc radii R_{dust} too small

Toci et al. 2021 Comparison with observations (Lupus)

Gas sizes almost ok, dust sizes too small!

Toci et al. 2021 **Possible solutions: slover growth?**

1) R_{dust} is too small: less efficient radial drift?

Explore different dust growth timescale in the 2 population model of Birnstiel et al. 2012, as Booth & Owen 2020 and Sellek et al. 2020:

$$t_g = \frac{a}{\dot{a}} = f_{\text{grow}} \left(\frac{\Sigma_g}{\Sigma_d \Omega} \right) \qquad \begin{array}{l} \text{f}_{\text{grow}} = 1 \rightarrow \text{all the collision results in growth} \\ \text{f}_{\text{grow}} = 100 \rightarrow 1\% \text{ of the collision results in growth} \end{array}$$

Toci et al. 2021 Possible solutions: slover growth?

1) R_{dust} is too small: less efficient radial drift?

Explore different dust growth timescale in the 2 population model of Birnstiel et al. 2012, as Booth & Owen 2020 and Sellek et al. 2020:

$$t_g = \frac{a}{\dot{a}} = f_{\text{grow}} \left(\frac{\Sigma_g}{\Sigma_d \Omega} \right)$$
 $f_{\text{grow}} = 1 \rightarrow \text{all the collision results in growth}$
 $f_{\text{grow}} = 100 \rightarrow 1\%$ of the collision results in growth

Needs f_{grow} =100 (= block dust evolution) \rightarrow very strong dependence on the initial conditions

Leads to a final disc mass f_{grow} times larger, problems to explain Upper Sco masses $({\mbox{Sellek et al. 2020}})$

Toci et al. 2021 **Possible solutions: MHD winds?**

2) R_{CO} is too large: <u>MHD winds?</u>

If angular momentum of gas is removed due to disc—wind interactions discs sizes should not grow with time (Suzuki 2016, Bai 2016)

- Reduce the values of $R_{\rm CO}$ / $R_{\rm dust}$

• Strong constraint on the efficiency of disc winds (needs to remove a large fraction of the disc mass)

- Not solving the R_{dust} problem: still needs a way to slow down radial drift

Toci et al. 2021 **Possible solutions: MHD winds?**

2) R_{CO} is too large: <u>MHD winds?</u>

If angular momentum of gas is removed due to disc—wind interactions discs sizes should not grow with time (Suzuki 2016, Bai 2016)

- Reduce the values of R_{CO} / R_{dust}

 Strong constraint on the efficiency of disc winds (needs to remove a large fraction of the disc mass)

Future work is coming (Alice's Ph.D. project, B. Tabone's paper, ..)

- Not solving the R_{dust} problem: still needs a way to slow down radial drift

Possible solutions: Different chemical evolution?

3) R_{CO} is too large: <u>Different CO abundances?</u>

10-100 times lower abundance of CO found by several authors (Favre et al. 2013) (Turbulent mixing)

- Abundances of 10-6 reduce the values of $R_{\rm CO}$ / $R_{\rm dust}$

• Allows initially larger discs Rc=30-50 au

 Not solving the R_{dust} problem: still needs a way to slow down radial drift (less stringent)

Toci et al. 2021 **Possible solutions: Substructures!**

4) Dust traps collecting the dust at pressure maxima (Whipple 1972, Pinilla et al. 2012, + ...)

- Increase the values of R_{dust} withouth changing $\ R_{\text{CO}}$

• Reduce the values of R_{CO} / R_{dust}

• No requirements for initial conditions or disc evolution

Unresolved substructures can be at play also in compact and faint discs, undetected

• All the mechanisms that creates substructures where dust is trapped can be at play! (e.g., Planets Lin & Papaloizou 1979 ..)

e.g. Klahr & Henning (1997) ; Fromang & Nelson (2005); Johansen et al. (2009); Pinilla et al. (2012a)

Toci et al. 2021 **Possible solutions: Substructures!**

4) Dust traps collecting the dust at pressure maxima (Whipple 1972, Pinilla et al. 2012, + ...)

Increase the values of R_{dust} withouth changing R_{CO} •

Reduce the values of R_{CO} / R_{dust}

Future work is coming (A. Zormpas paper,

No requirements for initial conditions or disc evolution ٠

Unresolved substructures can be at play also in compact and faint discs, undetected

All the mechanisms that creates substructures where dust is trapped can be at play! (e.g., Planets ٠ Lin & Papaloizou 1979 ...)

Toci et al. 2021 **Possible solutions: Different viscosity law?**

5) R_{CO} is too large: effect of the shape of the surface density in the outer part of the disc?

Affects both the dust and gas sizes \rightarrow it is difficult to probe the outer part of discs

- Not solving the R_{dust} problem: still needs a way to slow down radial drift (less stringent)

Toci et al. 2021

Can we trust CO?

 $R_{\rm CO}$ depends on the mass distribution in the outer part in the disc

- Not a good tracer for mass
- Not a good tracer for viscous spreading
- Not a good tracer for the scale radius of the disc

 \rightarrow Explore other tracers as 13CO (but we need to improve our knowledge of the thermochemistry of discs)

Conclusions

We modelled the secular evolution of $R_{\rm CO}$ / $R_{\rm dust}$ to test the efficiency of radial drift

- First models with dust growth + gas evolution
- Our results for dust and gas are in agreement with previous works (Rosotti et al. 2019, Trapman et al. 2019,2020)
- The values of R_{dust} are too small with respect to the observed values, leading to R_{CO} / R_{dust} values too large for all the values of the viscosity
- To solve this inconsistency unresolved substructures should be present in almost all the discs

Future work

- Proper polulation synthesis (coming soon.... Somigliana et al. 2021)
- Analytical prescriptions for the gas size (Toci+ in prep, Trapman+ in prep)
- Enviromental effects
- Different tracers
- Add substructures

