

## A Class I protostar with a high streamer mass infall rate

Teresa Valdivia Mena Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics

J. Pineda, D. Segura-Cox, P. Caselli, R. Neri, and the PRODIGE team

GAPS, RINGS, SPIRALS, AND VORTICES: STRUCTURE FORMATION IN PLANET-FORMING DISKS MIAPP CONFERENCE 29.10.2021









#### Will the streamer deliver a significant amount of mass to the disk?

## Will the streamer deliver a significant amount of mass to the disk?



## Will the streamer deliver a s Will I emphasise the importa than

- Will the streamer deliver a significant amount of mass to the disk?
  - Yes.
- Will I emphasise the importance of mass infall in later phases than Class 0?

- Will the streamer deliver a significant amount of mass to the disk?
  - Yes.
- Will I emphasise the importance of mass infall in later phases than Class 0?
  - Yes.

# Will the streamer deliver a signal of the streamer deliver a signa

Will I show you how the streamer affects the protoplanetary disk?

- Will the streamer deliver a significant amount of mass to the disk?
  - Yes.
- Will I emphasise the importance of mass infall in later phases than Class 0?





# Will the streamer deliver a signal of the streamer deliver a signa

Will I show you how the streamer affects the protoplanetary disk?

- Will the streamer deliver a significant amount of mass to the disk?
  - Yes.
- Will I emphasise the importance of mass infall in later phases than Class 0?



### **... NO.**



## How do you know you found a streamer?

### Step 1: find asymmetric gas emission









### Step 1: find asymmetric gas emission









## <sup>3</sup> Step 2: check <sup>4</sup> <sup>7</sup> **that its not part** of the outflow

CO(2-1) blueshifted CO(2-1) redshifted Continuum 1 mm

This may not be the full length of the streamer

 $\mathbf{C}$ 

3

**XIII** 

tensitv

Jegrated



#### **Step 3: attempt to model it!** Streamer is free falling



#### **Step 3: attempt to model it! Streamer is free falling**



#### **Step 3: attempt to model it! Streamer is free falling** ... so how much mass does it deliver?



#### Streamer is also traced by C<sup>18</sup>O

 $N_{\rm C^{18O}} \sim 0.8 - 4 \times 10^{15} \,\rm cm^{-2}$ 

 $M_{in} > 1.2 \times 10^{-2} \,\mathrm{M_{\odot}}$ 



Valdivia-Mena+in prep C<sup>18</sup>O(2-1) (image)  $H_2CO(3_{0,3}-2_{0,2})$  (contours) 9



#### Streamer is also traced by C<sup>18</sup>O

 $N_{\rm C^{18}O} \sim 0.8 - 4 \times 10^{15} \,\rm cm^{-2}$ 

 $M_{in} > 1.2 \times 10^{-2} M_{\odot}$ 





Valdivia-Mena+in prep C<sup>18</sup>O(2-1) (image) - H<sub>2</sub>CO(3<sub>0,3</sub>-2<sub>0,2</sub>) (contours) 9



#### Infall rate dominates over accretion rate



 $\dot{M} = (1.3 - 2.8) \times 10^{-7} \,\mathrm{M_{\odot} yr^{-1}}$ 

Fiorellino+ 2021

$$\langle \dot{M}_{in} \rangle = 1.3 \times 10^{-6} \,\mathrm{M_{\odot} yr^{-1}}$$

- Mass might be accumulating in the disk
- Gas replenishment from outside the core
- Late infall can cause accretion burst

#### SO and SO<sub>2</sub> trace the inner envelope and gas disk



Right Ascension (J2000)

#### SO shows the envelope is asymmetric

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_4.jpeg)

#### SO shows the envelope is asymmetric

14

12

10

8

6

 $\mathbf{v}$ 

 $V_{LSR}$  (km

- Sakai et al. (2014) toy model of rotation + infall
- Red. and blueshifted sides need different sets of parameters

#### SO (5–4) (black) and SO<sub>2</sub>(11-10) (white)

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

#### **Gaussian decomposition returns 4 distinct components!**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

 $\boldsymbol{\Omega}$ LSR

![](_page_20_Picture_5.jpeg)

#### The asymmetries are expected from the environment

![](_page_21_Figure_1.jpeg)

50 kAU

х

![](_page_21_Figure_5.jpeg)

#### The asymmetries are expected from the environment

![](_page_22_Picture_1.jpeg)

#### Summary

- Mass infall rate is higher the protostellar accretion rate
- SO shows the complex kinematics of the inner envelope + probes the entrance of the streamer
- Mass for the protostar's growth can come from outside the natal core

![](_page_23_Picture_4.jpeg)

![](_page_23_Figure_6.jpeg)