Summary week 1

Nienke van der Marel MIAPP Leiden Observatory October 8th 2021

Jane Huang, Jaehan Bae, Mario Flock, Jeff Jennings

Google	disk substructures ubiquitous	X 🍦 Q
	🔍 All 🖾 Images ⊘ Shopping 🕞 Videos 💷 News 🗄 More	Tools
	About 1.850.000 results (0,47 seconds)	

Substructures (observations)

Ring/Cavity

Arcs

Spirals

Andrews (2020)

Talks Huang, Bae, van Dishoeck

Molecular lines

Annular gaps and rings

Spiral arms

Arcs

Substructures (simulations)

secondary.

0.5

1.(-200

-100

0

X [au]

100

200

tertiory

0.0

X [r_p]

-0.5

-1.0

Talks Flock, Bae

Substructures (simulations)

Asymmetries:

Vortex (Rossby wave instability)

- Infall
- Planet
- Accretion transition
- Triggers non-detectable spirals
- Dust grains trapped ahead (peak shift)
- Planet growth speed/mass and h/r important (Hammer+2017,2019,2021)
- Weakened by dust feedback, selfgravity, turbulence

Lump/horseshoe

- Binary companion
- Not weakened by turbulence
- No self-gravity: no peak shift?

Need to find companions, measure turbulence or (maybe) measure peak shift to distinguish

Talks Zhu, Hammer

How common are substructures?

- 1. High-resolution are biased towards most massive disks (ALMA) and most luminous stars (OIR)
- 2. Detectability of substructures (or: "scale of detectable substructures") depends on spatial resolution!

Talk Bae

Van der Marel & Mulders 2021

How common are compact disks?

What does dust evolution tell us?

Pinilla et al. 2012, 2020

What does dust evolution tell us?

Observations:

- Correlation between dust mass and stellar mass steepens with time
- Structured disks no drop (traps!)
- Strongest drop at low-mass stars (drift!)

Evolution of disks?

100491847

...

00110-2019

۰

141423-140

•

101131-1030

۲

61634-0242

۰

۲

100310-23

...

82709-23484

.

۰

۰

061423-240

۰

10141141001

•

163(03-34286

۲

18:4201904

•

=> no drift

Ansdell et al. 2021

Evolution of disks?

Sample 700 disks: occurrence of large scale (R>25 au) substructure ~17%

Two separate evolutionary pathways: the structured disks and compact disks (drift!)

Van der Marel & Mulders 2021

How common are substructures (stellar mass)?

Match: disk gaps can be linked to giant planets (when there is migration)!

=> Stellar mass dependence also explains steepening in M_{dust} - M_{star} plot

Mayor et al. 2011 Fernandes et al. 2019 van der Marel & Mulders 2021

What happens with the compact disks?

Super-Earth occurrence decreases with stellar mass, just like compact disks:

=> A giant planet prevents radial drift and thus super-Earth formation

Planet Core Growth M_{iso} @ 5 au M_{iso} @ 0.3 au Snow Line w/ Filtering 105 104 106 107

Are compact disks really compact?

Are compact disks really compact?

Re-imaging improves resolution by factor 3: super resolution (0.03")

ENNINGS We need more highresolution data (and techniques!) of compact disks.

> Yamaguchi et al. 2021 Jennings et al. subm.

Talk Jennings

How large are the dust grains?

Polarization

Talk Kataoka

Kataoka et al., 2015

Polarization

$\sim 100 \ \mu m$ sized grains?

ALMA Partnership 2015, Stephens et al. 2017

Kataoka et al. 2017, modified

Talk Kataoka

Spectral index: resolved analysis

MAPS: multi-wavelength

Spectral Indices

Talk Sierra

Sierra et al. 2021 (MAPS)

Spectral index

Results: Non-scattering model

Favoring a_{max} ~ mm

Sierra et al. 2021 (MAPS)

Spectral index: two solutions with scattering

Results: Scattering model

Results: Scattering model [small grains < 300 microns]

Small grains not favored: gravitationally unstable and inconsistent with 7mm

Sierra et al. 2021 (MAPS)

Talk Sierra

Spectral index: surveys

Talk Tazzari

Tazzari et al. 2021

Spectral index: surveys

So how to solve the discrepancy with polarization?

- Very optically thick emission: large grains hidden in mid-plane
- But such extreme settling requires α ~ 10⁻⁵
- Difficult to include vertical structure in spectral index modelling: too many parameters
- Microphysics: porous grains? Alignment? Larger samples?

We need ngVLA to resolve Large grains

Talks Kataoka, Sierra, Tazzari

Multiplicity

Multiplicity complicates many disk processes and is not well constrained in young clusters....

Variation in separation distribution between different stars

Planet formation

suppressed in

on separation

(c) Disk Fragmentation

0.1 Myr 10 - 500 au

Disk fragmentation more likely to result in stellar than planetary companion

Talk Kratter

Summary

- Substructures are ubiquitous in disk simulations (but not necessarily due to planets!)
- Substructures in disk observations may be ubiquitous (but not necessarily at large spatial scales!)
- Deep, high-resolution, uniform observations are required of both dust and gas to link data to simulations of large and small disks
- Cm observations may provide the answers to the grain size discussion

Wavelength