Deciphering protoplanetary disks: step by step

Ewine F. van Dishoeck Leiden Observatory/MPE

Perspective talk MIAPP meeting October 8, 2021

Caveats

- Biased perspective on part of the field
 - References highly incomplete
- Focus on gas rather than dust
- Look back but also forward
- Look beyond topic of disks

Thanks to all colleagues, postdocs, students for making this such an enjoyable journey

Thanks to Jane Huang for an excellent review and perspective

Progress in astronomy driven by new instrumentation

Kosetta 2014-2019 Solar system link

JWST 2022-

Every wavelength provides piece of puzzle

Scenario for low-mass star formation

Shu et al. 1987, 1993

Disks: do they exist?

An image is worth a thousand words (and a thousand SEDs....)

Smith & Terrile 1984

30 years later: planets!

Beta Pic b VLTI-Gravity Spatially resolved K-band spectrum

Gravity, Nowak, Lacours et al. 2019

Existence of protoplanetary disks? It took some time to provide convincing evidence

Keplerian rotation or infall?

Also: Japanese Nobeyama

Young disks: Envelope vs disk

Envelope overwhelms disks except on longest baselines

Keene & Masson 1990 Hogerheijde et al. 1998 Looney et al. 2000

HST/C. O'Dell et al. 1993-1995 VLA: Churchwell et al. 1987

HH 30 disk + jet

Optical image HST

Green: [O III] White: broadband

HST: C. Burrows et al. 1996

Some years are special: 1995-1996

- HST Orion disk images: disks exist – Also with mm interferometers
- Discovery of extrasolar planets: 51 Peg
- Bright comets: Hyakutake, Hale-Bopp

Disks

Comets

Mm observations of young disks

Mannings & Sargent 1997

Velocity pattern CO consistent with Keplerian rotation

Also: Lay et al. 1994 (JCMT-CSO), Guilloteau, Dutrey et al. 1994-1997 (IRAM PdBI) Hayashi et al. 1993 (Nobeyama)

More observations of 'debris' disks

Vertical temperature structure

-¹²CO τ=1 surface near top of disk
-¹³CO emission from deeper in disk

Van Zadelhoff et al. 2001 Dartois et al. 2003

Three-layer chemical structure

Temperature now measured directly!

IM Lup

Pinte et al. 2018 Paneque et al., Izquierdo et al. modeling!

Vertical structure molecules

Paneque et al. 2021, to be submitted

Elias2-27

van 't Hoff et al. 2020 Podio et al. 2020

- CO not frozen out (except at very large radii)
- H₂CO frozen out in midplane but not surface layers

Young disks are warm, mature disks cold

Young disks are warm Mature disks are cold

Van 't Hoff et al. 2020

Disk subthemes

- Disk surveys
- Disk chemistry
 - With gaps and cavities
- Inner disk structure

High-mass regions: Orion OMC2

Also: NGC 2024, L1641, ... van Terwisga et al. 2019, 2020 Grant et al. 2021, Otter et al. 2021

Unbiased survey of disks of around low-mass stars in high mass environment

High vs low-mass regions: 'Environment' (UV) matters

van Terwisga, Hacar, vD 2019

- Disks in OMC2 (away from bright massive stars) similar to Lupus
- Disks in ONC (near massive stars) much lower masses → *photoevaporation*

dM/dt~8x10⁻⁸ M_{sun}/yr

Mann et al. 2014, Eisner et al. 2018 ONC, Ansdell et al. 2017 σ Ori

And now for something really big!

Survey of Orion's Disks with ALMA (SODA)

Van Terwisga, Hacar, vD et al. subm

N = 872 disks across the length of Orion A, at 1.3" in ALMA B6

Orion disk mass distribution

van Terwisga et al. subm.

- 57% detected
- Similar distribution to Lupus, Cha I
- Direct comparison to Tobin et al. 2020: factor 50 flux loss vs Class 0

Young disks are massive Planet formation must start early

Tychoniec et al. 2018, 2020

Solar system: evidence for early planet formation

Kruijer et al. 2017

Gas vs dust structures

MAPS Öberg et al. 2021 Guzman et al. 2021 Law et al. 2021

- Many gas structures not related to dust structures

Every molecule tells its own story

TW Hya, N_2H^+ 4-3

CO snowline 30 AU (*) Qi et al. 2013

> TW Hya, CN 2-1 UV flux, flaring

Cazzoletti et al. 2018

IM Lup, DCO⁺ 3-2

CO snowline CO photodesorption

TW Hya, C₂H

Bergin et al. 2016 Miotello et al. 2019, Bergner et al. 2019

IRS48, ¹³CO 3-2

Van der Marel et al. 2013, 2016

Much more data needed!

Few molecules trace gas cavity

Booth, Natoewal, Leemker et al. in prep.

- Model with gap in dust and varying depths in gas
- UV penetrates deeper in cavities \rightarrow affects chemistry

DALI model

Physical-chemical disk models

Challenge to maintain them!

Bruderer et al. 2012, 2013, 2014 Miotello et al. 2014, 2016 CO isotopologs Facchni et al. 2017 grain growth + drift

Gas cavity < Dust cavity

Leemker et al., in prep.

- Deep gas cavities (drop factor 100 or more) point to companions
- Need C¹⁸O (¹²CO, ¹³CO temperature sensitive)

Bruderer et al. 2014, Perez et al. 2014, Van der Marel et al. 2015, 2016, Fedele et al. 2017, ...

Snowlines and dust traps change C, O, N, ... abundances in gas vs ice

Öberg, Bergin et al. 2011, 2021 Vvn Dishoeck & Bergin 2021

CO abundance profile: enhancements vs depletions inner disk

- Enhancement: radial drift icy pebbles
- Depletion: dust trap beyond CO iceline

Where is the volatile oxygen?

Hogerheijde et al. 2011, Du et al. 2015, 2017

Gas mass from HD factor 100 higher than from C¹⁸O

Bergin et al. 2014, Kama et al. 2016, Miotello et al. 2017

Disk mass from *Herschel*-PACS: HD J=1-0 112 μm

Bergin et al. 2013, McClure et al. 2016

Favre et al. 2013, Schwarz et al. 2016, Trapman et al. 2017, Kama et al. 2020

Chemistry: importance of disk structure and dust evolution

UV penetrates deep into disk

Small bare grains

Icy pebbles O-rich

Gas with C/O >1 (but overall C depleted)

> Bergin et al. Birnstiel et al. Krijt et al.

Inner Disk: IR

- Figure by A. Bosman
- IR: gas: major species, including without dipole moment H₂, CO₂, CH₄ solids: silicates, ices, PAHs atomic lines, e.g. [Ne II], [S I], ...
- Mm: gas: also minor species dust: continuum

Silicates: disks vs solar system

ISO: Herbig stars

Malfait, Waelkens, Waters et al. 1998

Crystallinity

ISO: Herbig stars

Spitzer: T Tauri stars and Brown Dwarfs

Apai et al. 2005

- Crystallinity seen in large fraction of T Tauri + BD disks (>50%)
- Interstellar silicates amorphous => crystallization at > 800 K must have occurred in inner disks => provides constraints on efficiency of heating and mixing processes
- Also seen in comets => mixing in our solar system was more significant than thought before

Silicate line profiles (continuum subtracted)

olivine 0.1 µm grains 4 olivine 2.0 µm grains 3.5 0.1µm ່ວ с, Е З absorption coeff. (10³ 2.5 2.0 µm 2 1.5 1 0.5 0 10 11 12 9 13 8 lambda (µm)

- Ratio of 11.3/9.7 µm fluxes is measure of flatness of profile

Bouwman et al. 2001 Van Boekel et al. 2003 Przygodda et al. 2003

Silicates in T Tauri disks

- Indication of grain growth to a few µm in most sources
- No correlation with age, accretion rate; weak trend with stellar type
 - Disks around M-stars show more grain growth than A stars

Kessler-Silacci et al. 2006, 2007

Statistics 10 µm feature

Remarkable similarity (even though individual disks are very different)

Balance between dust growth and fragmentation that is maintained over a few million years independent of the population studied

Kessler-Silacci et al. 2006, 2007 Oliveira et al. 2010, 2011

The Picture

- Dust growth and sedimentation
- Bigger particles in midplane collide (fragmentation/bouncing) producing smaller particles
- Turbulent mixing keeps a small dust population in upper layers at all times
 - Different processes may be responsible for small dust at a given time

Scenario consistent with evidence from primitive chondrites in our own Solar System

Hot water in the planet-forming zones of disks

Water Vapor and Other Gases in AS 205 NSpitzer Space Telescope • IRSNASA / JPL-Caltech / C. Salyk (Caltech)Salyk, Pontoppidan et al. 2008ssc2008-06b

Water and organics in AA Tau

- Deep new observations: such rich spectra are common for T Tauri disks

Revival of IR spectroscopy after 8 yr drought (>2013)

- VLT-CRIRES+, Keck-NIRSPEC: high spectral res - 1-5 μm R~10⁵
- JWST-MIRI, NIRSPEC: sensitivity, full λ range
 - 1-28 μm *R*~3000 IFU
- VLTI-Gravity(+): spatial resolution 1 milliarcsec
 2µm R~3000
- ELT-METIS ~2027: spatial + spectral resolution
 1-5 μm R~10⁵, IFU

JWST spectral sensitivity

Ro-vibrational energy levels of CO

- Lines probe warm gas in inner few AU of disks
- Many lines in a few spectral settings

CO Profile

- Kepler's law => Inner radius R_{CO}
- Evidence for disk and in many cases a slow disk wind

Probing disk + *slow* disk wind

Pontoppidan et al. 2011 Brown et al. 2013 Banzatti & Pontoppidan 2015

- Use spectro-astrometry to locate emission within a few au
- Slow molecular disk wind moving at few km/s w.r.t. stellar velocity

Probing inner disk gas structure

Bosman et al. 2019

Invert line profile to get gas structure on few au scales!

JWST: inner disk chemistry Probing the gas that makes planets

Inventory C, O, N

Bosman et al. 2017, Bosman, priv. comm.

Pebble drift enhances H₂O in inner disk

But.... Dust traps!

Bosman et al. 2018

Locking up volatiles in dust traps Linking inner and outer disk

AS 209

McClure et al. 2019, 2020 Bosman & Banzatti 2019

Ice features: simple to complex

- Ices can contain significant fraction (>50%) of heavy element abundances

JWST: ices, even spatially resolved!

Pontoppidan et al. 2005

McClure et al. ERS, GO van Dishoeck et al. GTO, GO Henning, Kamp , EvDet al. GTO

CO₂, CH₃OH ice enhanced in disks? (CO transformation)

From disks to comets, planets

Can we link planetary atmosphere composition with its formation location / history?

Key question: are most heavy elements accreted from gas or ice?

Sato et al. 2016, Piso et al. 2015, 2016

Complicated by:

- Radial drift pebbles, dust traps, diffusive mixing
- Migration planets
- Reset chemistry in inner disk (inside snow lines)
- Reset chemistry in planetary atmospheres→ preserve C/O, C/N?

Vertical accretions: Meridional flows

Teague et al. 2019, Nature Cridland, Bosman & vD 2020 Facchini, Cridland et al. in prep

Chemistry in upper layers is relevant for planet formation \rightarrow JWST!

PDS70b,c disk + planets!

Direct spectroscopy exoplanets

Isotopes!

Low $^{12}CO/^{13}CO=31+17-10!$

Zhang, Snellen et al. 2021

Accelerating to the future

Extremely Large Telescope ESO ~39m diameter ~ 2027

METIS mid-IR instrument Ariel

And hopefully more.....

From disks to comets, planets

A bright future, step by step!