## DISC SELF GRAVITY AS A DYNAMICAL SCALE FOR THE DISC MASS

Previously: (this work) PhD @Università degli Studi di Milano Now: Postdoc @CRAL, ENS de Lyon

**COLLABORATORS:** GIUSEPPE LODATO (UNIMI) LEONARDO TESTI (ESO) GIUSEPPE BERTIN (UNIMI)

benedetta.veronesi@ens-lyon.fr



Benedetta Veronesi

```
TERESA PANEQUE-CARREÑO (ESO)
CASSANDRA HALL (UNIVERSITY OF GEORGIA)
LAURA PÉREZ (UNIVERSIDAD DE CHILE)
```

October 12, 2021 MIAPP



## HOW MASSIVE ARE PROTOPLANETARY DISCS?

 $M_{\rm disc} = ?M_{\odot}$ 







## HOW MASSIVE ARE PROTOPLANETARY DISCS?

Reservoir for planets: exoplanets distribution

Planet evolution: migration, accretion... Ionization rate (MRI,....) Chemistry





## HOW TO WEIGH PROTOPLANETARY DISCS?

From the dust mass....



Uncertainties:

- Gas/dust ISM value = 100 ?? (Draine 2003)
- $R_{\rm gas} \neq R_{\rm dust}$ ,  $H_{\rm gas} \neq H_{\rm dust}$  (drift, settling, viscous evolution of the gas, initial conditions?...)
- Mdust (Manara et al. 2018, Kuffmeier et al. 2017, Tychoniec \_ et al. 2020)





HD 163296



Dust mass primarily in (sub)mm grains  $M_{\rm disk} \approx 100 \times M_{\rm dust}$ ISM gas-to-dust ratio gas is 99% of disk mass) (From Megan Ansdell slides')



## HOW TO WEIGH PROTOPLANETARY DISCS?

From the gas mass....it's even more difficult!

H2 not directly detectable: CO isotopologues



![](_page_4_Picture_4.jpeg)

WHY? CO-depletion (Favre et al. 2013, Miotello et al. 2017):

e.g., freeze-out onto dust grains

![](_page_5_Picture_0.jpeg)

## ALTERNATIVE DISC SCALE

Is there a method to estimate the disc mass which is independent of CO/dust to H<sub>2</sub> conversion factor?

HD measurements

Disc dust lines at different  $\lambda$ , Rmm (Powell et al. 2017,2019)

![](_page_5_Figure_7.jpeg)

Total gas surface density estimate Hyp:  $t_{drift,s} = t_{growth,s} = t_{disc}$ 

Scattered light vs continuum features Veronesi et al. (2019)

**Dust/gas interaction** as disc scale (local surface density estimate)

HD does not freeze-out! T vertical structure needed (Trapman et al. 2017) e.g., TWHya (Bergin et al. 2013), DM Tau and GM Aur (McClure et al. 2016)

![](_page_5_Figure_12.jpeg)

![](_page_5_Picture_13.jpeg)

## HOW SHOULD WE WEIGH PROTOPLANETARY DISCS?

![](_page_6_Figure_1.jpeg)

- HD (and we will manage to get an instrument to do it)
- Other
- Rolling a dice
- CO (we can overcome abundance problems through other chemical tracers)
- Dust (we can overcome optical depth problems through e.g. long wavelength observations)
- Dust (via dust line method)
- Multi-wavelength observations
- Combinations of methods
- Dynamically
- CO + effects of pebble transport in order to interpret CO abundance outside CO snowline
- Dust by long wavelengths / gas by HD (hopefully)
- Combination of dust and gas (e.g. CO and/or HD) after careful calibration

![](_page_6_Picture_14.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

Rich Teague's talk: what we can extract from the kinematics

Dynamically — Searching for SG deviation from Keplerianity in the disc rotation curve This talk, Veronesi et al. (2021), ApJL, 914, 27

> (but also, Mdisc from the GI wiggle, look at Terry et al., subm.)

## DISC SELF-GRAVITY IN A NUTSHELL

![](_page_8_Figure_1.jpeg)

SG fundamental to understand the entire planet formation process

![](_page_8_Figure_3.jpeg)

#### DISC IS SELF-GRAVITATING **UNSTABLE!**

![](_page_8_Picture_6.jpeg)

#### Disc self gravity >> thermal pressure + other stabilizing effect, e.g rotation

#### When?

Initial evolutionary stages, after formation from the parental molecular cloud

![](_page_8_Picture_10.jpeg)

GI from rapid accretion (see Kaitlin Kratter's tutorial talk) -> stellar companion

Late episode of infall accretion from the MC (e.g. Elias 2-27?)

![](_page_9_Picture_0.jpeg)

![](_page_9_Figure_1.jpeg)

SG fundamental to understand the entire planet formation process

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

#### DISC IS SELF-GRAVITATING UNSTABLE!

Dust concentration and fragmentation in GI spirals:

Possible starting mechanism of planet formation

(Rice et al. 2004,2006; Longarini et al. in prep, see Giuseppe's talk)

#### Planet survival in a self-gravitating disc:

- Unlikely with constant cooling  $\beta$ : e.g., Baruteau et al. (2011), Malik et al. (2015)

- Possible with variable cooling  $\beta(R)$ : e.g., Rowther et al. (2020)

![](_page_9_Picture_13.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

#### DISC IS SELF-GRAVITATING UNSTABLE!

Self-gravity contributes to the gravitational potential: - basic state: super-Keplerian rotation curve (e.g., Lodato & Bertin 2003; Veronesi et al. 2021) - non axisymmetric perturbation: GI spirals -> wiggle (Hall et al. 2020, Terry et al. 2021, Longarini et al. 2021)

![](_page_10_Figure_7.jpeg)

(e.g., Dong et al. 2018, Jaehan's talk):

- Dipierro et al. 2014)
- 2004,2006)

![](_page_11_Picture_5.jpeg)

| .06 | _ | 0. | 1 |
|-----|---|----|---|
|     |   |    |   |
|     |   |    |   |
|     |   |    |   |
| •   |   |    |   |
| , . |   |    |   |

## A DYNAMICAL MASS ESTIMATE: WHO? Is there a method to estimate the disc mass which is THE CANDIDATE: ELIAS 2-27

Elias 2-27: 0.8 Myr, M0 star, d=140 pc

Two large-scale spiral arms (Pérez et al. 2016a; Andrews et al. 2018, Paneque-Carreno et al. 2021)

Disc-to-star  $\approx 0.3$ , considering gas/dust=100 (Andrews et al. 2009; Pérez et al. 2016; Meru et al. 2017; Hall et al. 2018; Cadman et al. 2020; Paneque-Carreno et al. 2021)

Possible origin for the spiral arms: gravitational instabilities

(Meru et al. 2017, Hall et al. 2018, Paneque-Carreno et al. 2021)

Inner gap at  $\sim 60$  au: possible companion formed after disc fragmentation? (Huang et al. 2018)

Observations from: Peréz et al. (2016), Huang at al. (2018), Paneque-Carreno et al. including Veronesi B. (2021)

DSHARP (1.3 mm)

![](_page_12_Picture_10.jpeg)

### A DYNAMICAL MASS ESTIMATE: THE DATA

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

#### Zoom in...

Asymmetry between East and West side

East side: more extended and cloud-contaminated.

#### Infall? Chaotic accretion? Connection with large-scale structures?

![](_page_13_Picture_7.jpeg)

Paneque-Carreno et al., including Veronesi B. (2021)

![](_page_13_Picture_9.jpeg)

![](_page_13_Picture_10.jpeg)

![](_page_13_Picture_11.jpeg)

![](_page_13_Picture_12.jpeg)

![](_page_14_Figure_1.jpeg)

Paneque-Carreno et al., including Veronesi B. (2021)

![](_page_14_Picture_4.jpeg)

![](_page_15_Figure_0.jpeg)

$$\frac{|\text{DEA: A DYNAMICAL MASS ESTIMATE}}{\Sigma(R) = \Sigma_{c} \left(\frac{R}{R_{c}}\right)^{-p} \exp\left[-\left(\frac{R}{R_{c}}\right)^{2-p}\right]}{\Gamma(R) \propto R^{-0.5}}$$
Pérez et al. (2016), Paneque-Carreño et al. (2021)  
 $z(R) = z_{0} \left(\frac{R}{R_{0}}\right)^{W} + z_{1} \left(\frac{R}{R_{0}}\right)^{\varphi}$ 
Paneque-Carreño et al. (2021)  
Paneque-Carreño et al. (2021)  
 $\frac{\partial \Phi_{\text{disc}}}{\partial r}(r, z) = \frac{G}{r} \int_{0}^{\infty} \left[K(k) - \frac{1}{4} \left(\frac{k^{2}}{1-k^{2}}\right) \times \left(\frac{r'}{r} - \frac{r}{r'} + \frac{z^{2}}{rr'}\right) E(k)\right] \sqrt{\frac{r'}{r}} k\Sigma(r') dr'$ 
Lodato & Bertin (1999,2003)

deviations from Keplerian rotation in protoplanetary disc with a self-gravitating model

![](_page_16_Figure_3.jpeg)

Infer simultaneously the disc and star mass

![](_page_16_Picture_5.jpeg)

### POWER-LAW FIT

Power-law with free index

$$v(R) = v_0 \cdot R^{-p}$$

![](_page_17_Figure_3.jpeg)

competing models:

$$\Omega^2 \sim \frac{1}{R} \frac{\mathrm{d}\Phi_{\mathrm{disc}}}{\mathrm{d}R} (R, z) + -\frac{1}{R} \frac{\mathrm{d}\Phi_{\mathrm{disc}}}{\mathrm{d}R} (R, z) + \frac{1}{R} \frac{\mathrm{d}\Phi_$$

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

### FITS RESULTS

![](_page_18_Figure_1.jpeg)

Kep model (sg)

# 131 East side C<sup>18</sup>O East side 200 250300 $R\left[\mathrm{au}\right]$

#### Fitting procedure: both sides, both isotopologues (combined fit)

The MCMC Hammer

|                                       | $^{13}\mathrm{CO}$              | $C^{18}O$                       | Con |
|---------------------------------------|---------------------------------|---------------------------------|-----|
|                                       |                                 |                                 |     |
| Keplerian fit                         |                                 |                                 |     |
| $M_{\star} \left[ M_{\odot}  ight]$   | $0.50\substack{+0.01 \\ -0.01}$ | $0.46\substack{+0.03\\-0.03}$   | 0.  |
| Self-gravitating fit                  |                                 |                                 |     |
| $M_{\star} \left[ M_{\odot}  ight]$   | $0.45\substack{+0.03\\-0.03}$   | $0.43\substack{+0.05 \\ -0.07}$ | 0.  |
| $M_{ m disk}\left[M_{\odot} ight]$    | $0.1\substack{+0.05 \\ -0.04}$  | $0.08\substack{+0.08\-0.05}$    | 0.  |
| $\lambda = \Delta (	ext{red-}\chi^2)$ | 2.16                            | -0.19                           |     |
|                                       |                                 |                                 |     |

![](_page_18_Picture_6.jpeg)

![](_page_18_Figure_7.jpeg)

![](_page_18_Figure_8.jpeg)

### FITS RESULTS

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

## $^{13}$ CO fit: both sides

|                                      | $^{13}CO$                      | $C^{18}O$                       | Combined fit                  |
|--------------------------------------|--------------------------------|---------------------------------|-------------------------------|
|                                      |                                |                                 |                               |
| Keplerian fit                        |                                |                                 |                               |
| $M_{\star} \left[ M_{\odot}  ight]$  | $0.50\substack{+0.01\\-0.01}$  | $0.46\substack{+0.03\\-0.03}$   | $0.49\substack{+0.01\\-0.01}$ |
| Self-gravitating fit                 |                                |                                 |                               |
| $M_{\star} [M_{\odot}]$              | $0.45\substack{+0.03\\-0.03}$  | $0.43\substack{+0.05 \\ -0.07}$ | $0.46\substack{+0.03\\-0.03}$ |
| $M_{ m disk}\left[M_{\odot} ight]$   | $0.1\substack{+0.05 \\ -0.04}$ | $0.08\substack{+0.08\-0.05}$    | $0.08\substack{+0.04\\-0.04}$ |
| $\lambda = \Delta(	ext{red-}\chi^2)$ | 2.16                           | -0.19                           | 1.38                          |
| self-gravitating Models not          |                                |                                 |                               |
| disc mod                             | el distinguishable             |                                 |                               |
| (errorbars too wide)                 |                                |                                 |                               |

![](_page_19_Picture_5.jpeg)

![](_page_19_Figure_6.jpeg)

![](_page_19_Figure_7.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Picture_1.jpeg)

### $^{13}$ CO fit West side

|                                       | $^{13}CO$                     | $C^{18}O$                     |
|---------------------------------------|-------------------------------|-------------------------------|
|                                       |                               |                               |
| Keplerian fit                         |                               |                               |
| $M_{\star} [M_{\odot}]$               | $0.49_{-0.01}^{0.01}$         | $0.42_{-0.03}^{0.03}$         |
| Self-gravitating fit                  |                               |                               |
| $M_{\star} \left[ M_{\odot}  ight]$   | $0.41\substack{+0.04\\-0.04}$ | $0.38\substack{+0.06\\-0.07}$ |
| $M_{ m disk} \left[ M_{\odot}  ight]$ | $0.16^{+0.06}_{-0.06}$        | $0.08^{+0.08}_{-0.06}$        |
| $\lambda = \Delta (red-\chi^2)$       | 4.57                          | -0.51                         |
|                                       |                               |                               |

#### self-gravitating disc model

WEST SIDE: not cloud-contaminated (better data, better estimate)

![](_page_20_Picture_6.jpeg)

### FITS RESULTS

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_21_Figure_5.jpeg)

## DISC MASS RESULTS AND GI

![](_page_22_Figure_1.jpeg)

Previous estimates: q=0.24, 0.16, 0.15 (Meru et al. 2017, Hall et al. 2018, Paneque-Carreño et al. 2020)

![](_page_22_Picture_3.jpeg)

 $Q = \frac{c_s \Omega}{\pi G \Sigma} = f \frac{M_*}{M_{\text{disc}}} \frac{H}{r}$ 

Correct range to produce gravitational instabilities and the observed spiral structure

disc/star  $\approx$  H/R

for protostellar disc pprox 0.1

20% < ISM value of 100 (Draine 2003)

![](_page_22_Picture_11.jpeg)

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_13.jpeg)

![](_page_22_Picture_14.jpeg)

## TAKE HOME MESSAGES: A DYNAMICAL SCALE

Is there a method to estimate the disc mass which is independent of CO/dust to H<sub>2</sub> conversion factor?

We searched for deviation from Keplerianity in the disc rotation curve of Elias 2-27

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_5.jpeg)

From the disc mass it is possible to infer also the gas/dust ratio:  $\approx 80 - 100$ 

Best fit: SG model

 $\frac{M_{\rm disc}}{M_{\star}} \approx 0.17 - 0.22$ 

GI regime: spirals Elias 2-27

![](_page_23_Picture_12.jpeg)

## FURTHER INVESTIGATIONS NEEDED...

- 1. Asymmetry between West and East side needs to be further investigated (maybe infall?)
- 2. Consider also the **vertical** contribution to the **pressure gradients** (super-Keplerian contribution, see Giuseppe's talk)
- 3. How does this method apply to other protoplanetary discs showing spiral structures or a high disc-to-star mass ratio? *e.g.:* IM Lup, WaOph 6 (see Giuseppe's talk), AB Aur (proposal Robin Dong)...
  Name your favourite (potentially) massive and SG disc and we'll weigh it for you!
  <u>https://www.supersurvey.com/Q7Y4WXXCS</u>
- Try different methods to derive the disc rotation curve (as for WaOph 6, see Giuseppe's talk)
   *e.g.* with the Eddy tool by Teague et al. 2018, DiscMiner code by Izquierdo et al. 2021
- 5. Parametric study: down to which disc mass value (and with what ALMA resolution) we would be able to detect the deviation from Keplerianity induced by the disc SG? (Work in progress...)

![](_page_25_Picture_0.jpeg)

YOU CAN CONTACT ME HERE: benedetta.veronesi@ens-lyon.fr

![](_page_25_Picture_2.jpeg)

## THANKS FOR THE ATTENTION!

![](_page_25_Picture_4.jpeg)