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Chapter 1

Introduction

“The world is the totality of facts, not of
things"

Ludwig Wittgenstein, Tractatus

Motivation The standard model of the universe is rich in intriguing dichotomies. Among
the most fascinating is the chasm between light and darkness, directly related to the divide
of matter into two species: Ordinary – or baryonic – matter obeys the laws we intuitively
understand from our everyday framework where matter has internal pressure and the ability
to dissipate energy via heat and radiation. This is due to the fact that it couples to the
electromagnetic field, which makes this type of matter directly observable to us. According
to the current concordance model of cosmology however, most matter isn’t like that. From
indirect observations, modern cosmology deduces that over 80% of the matter content of the
universe interacts only gravitationally. Therefore it is cold, dark and pressureless, earning
its name ’(cold) dark matter’. Due to its proportional dominance over regular matter, most
models of large-scale structure formation only consider the dark and gravitational side of the
universe. As a consequence of gravity acting the same on all scales, a salient feature of these
models is their self-similarity of structures. While this holds true to some degree for the
largest of structures the increasing importance of baryonic physics (Halle & Combes, 2013)
tends to break these self-similarities (Böhringer et al., 2012) around collapsed structures in
conspiracy with gravitational non-linearity. To understand the complete palette of cosmic
structures holistically, the coupling between these two regimes and the influence the smaller
scale baryonic physics can exert on large scale structures need to be understood better. The
most promising environments for studies of this transition are found in the intermediate
between high density and relative emptiness. The regions of interest can both be interpreted
as both the outer zones of collapsed structures and the walls of the relatively empty spaces in
between them. As both views offer unique insights into cosmic structures and the influence
of baryons on their evolution, this thesis will investigate the matter at hand from both sides
of the density dichotomy. Because of the highly non-linear nature of the problem, numerical
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simulations with their increasingly realistic baryonic physics present an ideal framework to
study these complex environments from a theoretical perspective.

The beginning of it all: The standard model The history of structures in the universe
starts with a bang: In concordance cosmology the universe began its existence as a hot
plasma in a violent big bang and has been expanding ever since (albeit at different rates
in different epochs). This standard model is called ΛCDM cosmology, named after its
two principal components, cold dark matter (CDM) and dark energy (Λ) (the previously
mentioned baryons are usually considered a part of CDM from a cosmological perspective).
The rate of expansion is governed by the ratio of the matter content to Λ (Friedman, 1922),
with the former acting as a contracting force via gravity and the latter providing an expansive
impetus. During the very energetic and chaotic first instants of the existence of our cosmos,
the seeds that grow into the richness of structure we observe today, were already planted:
The theoretical foundation of the ΛCDM concordance model is the cosmological principle,
according to which the distribution of matter and energy in the universe is both homogeneous
and isotropic on very large scales. This was validated by a serendipitous discovery in the
1960s (Penzias & Wilson, 1965) dubbed the Cosmic Microwave Background (CMB from
here on). It revealed the radiation emitted at the time the plasma from the big bang had cooled
enough by expansion for the photons to escape it for the first time, to be in accordance with
this axiom. However there were deviations from this homogeneity. These inhomogeneities
are today believed to be remnants of the fluctuations of a scalar quantum field (a later addition
to ΛCDM) that caused a very short spurt of exponential expansion called the inflationary
epoch (Mukhanov, 2005). More and more precise measurements of the CMB (Planck
Collaboration, 2020) have revealed that the predictions of the inflationary model (Hawking
(1982), Guth (1981), Dodelson & Schmidt (2021)) hold true to impressive precision. At the
time of the escape of the first photons, the initially small density fluctuations arising had been
spatially stretched out by the rapid expansion of the inflationary epoch and shortly afterwards
began to evolve predominantly dictated by gravity, starting the formation of the structures we
observe today:

A quick guide to cosmic structures In contrast to the chaotic systems we are used to
in our baryon dominated world, on large scales we find the universe to be surprisingly
structured, primarily by gravity. There is a distinct hierarchy of structures, inspiration for
the hierarchical models of structure formation we will discuss later. The smallest and most
numerous arrangements of matter for the scope of this thesis are galaxies. These basic building
blocks of large scale structures consist of an extended dark matter halo with the baryonic
matter condensed more centrally into dense features due to its ability to radiate away energy.
In these dense baryonic regions the gas can further condense to form stars. The light emitted
by these stars makes galaxies our primary tracer of large scale structure in observational
studies. They exhibit a wide range of morphologies and dynamical characteristics due to
their susceptibility to environmental influences like tidal torques and asymmetries in their
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accretion. Because of this, understanding their coupling to their cosmic environments is one
of the most important goals of galaxy formation theory, with many efforts both in observations
(Papovich et al., 2018) and simulations (Gouin et al., 2022), (Fortuné, 2022) towards this
goal. Moving on to larger scales, the distribution of these galaxies is exceedingly tidy. It
was recognized relatively early on in the first large-scale surveys, that most of them are
arranged in thin, string like arrangements called filaments, the occasional flat, sheet-like
structure and the busiest of busy convergence points of these filaments and sheets, called
nodes, forming a structure with a distinct, web-like topology, earning it the name cosmic
web (Bond et al., 1991). The nodes of the cosmic web house the most massive clusters of
galaxies, the most massive virialized structures in the universe. In addition to thousands
of galaxies, galaxy clusters also contain hot gas atmospheres, which due to the energies
involved is hot enough to emit in almost every observable waveband. Because of this and a
strong self-similarity in many of their properties, these giants have contributed massively to
advances made in cosmology and astrophysics over the last decades. Especially their gaseous
outskirts, though notoriously difficult to observe due to the low luminosities (Walker et al.,
2019), have been the subject of numerous environmental studies focused on the behaviour
of the baryonic gas with regards to shocks (Zhang et al., 2020), and the overall geometry
of the gas distribution (Gouin et al., 2022). High-Mach number accretion shocks in the
outskirts of galaxy clusters are of special interest to us, as their heating might drive powerful
outflows into the underdense regions surrounding the clusters and thus provide a large-scale
baryonic feedback. As galaxy clusters are fed by galaxies in-falling along the filaments of
the cosmic web, another focus of recent research has been the interaction of filaments and
cluster outskirts (Rost et al., 2021) as well as the effect of filaments on the internal cluster
properties (Zinger et al., 2016). Following the epigraph by Wittgenstein cited above, there is
a fact we need to add to our hierarchy of things. A direct consequence of most of the mass
accumulating in comparatively thin structures that do not fill much space is the presence of
very nearly empty space in between those structures. Though not astrophysical ’objects’ in
a strict sense, these cosmic voids are structures of utmost importance nonetheless. As their
walls are defined by the shape of the local cosmic web, they provide a unique view on the
properties and evolution of the large scale structure. During the course of the last couple of
years, voids have become a popular tool for numerous cosmological applications: Notable
examples include the estimation of cosmological parameters via the void-galaxy correlation
function of voids stacked to real-space spherical shapes (Hamaus et al., 2020), studying
the effects of massive neutrinos on the void clustering bias (Schuster et al., 2019) or trying
to resolve the Hubble tension by postulating a large local void impacting locally measured
recession velocities (Castello et al., 2022). Furthering our understanding of these cosmic
holes and how they evolve is therefore an important task for modern structure formation
theory.
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Synopsis In summary this thesis will feature two parts, dedicated to the dense and the
underdense side of the density dichotomy. The principal questions we will try to answer will
be:

• How self-similar is the accretion and decretion flow in the outskirts of simulated haloes
in the presence of baryons?

• What is the difference between gravity dominated and baryon dominated flows in the
outskirts of haloes?

• Where does outflowing gas in the outskirts of haloes originate?
• Is there an influence of baryonic physics on the relationship between void shapes and

cosmological parameters?
• How do baryons influence the evolution of void shapes?

In chapter 2 I introduce the general principles behind numerical simulations and the main
reasons for using them. Chapters 3 and 5 provide the long versions of the short introductions
– featured above – to haloes and voids respectively. The first chapter featuring numerical
results is chapter 4, in which the mass flows around haloes are investigated in the context of
the dark matter vs. baryons dichotomy. Chapter 6 will be concerned with voids and their
shapes. Here we will study how these shapes are tied to the cosmological initial conditions
within ΛCDM and how this relation is influenced by the presence of baryons. Finally chapter
7 will provide a summary and re-contextualisation of these separate findings.



Chapter 2

Why we build the box: Numerical
Simulations

2.1 The need for cosmological simulations

While the evolution of structures is governed by relatively simple and linear dynamics at
the largest of scales, non-linearity is emerging quickly once structures start to collapse.
Mathematically this means that the existence of analytical solutions is not guaranteed any-
more, necessitating either approximations that oversimplify the dynamics significantly or
numerical approaches (where simplifications are mitigated with computational power). This
necessity is further enhanced by the presence of baryonic physics aggravating the non-
linearity of the problem and coupling the purely gravitational physics to hydrodynamical
effects. To realistically model the universe in detail but also on very large scales si-
multaneously there simply is no way around cosmological simulations. The following
chapter will give an overview of the ingredients needed to build a simulation box for re-
liable comparisons to observations. Because this thesis will be limited to the Magneticum
(http://www.magneticum.org/simulations.html) suite of simulations based on the
integrator Gadget-3, the focus will be on the methods used in this specific set.

2.2 An artist needs a canvas: Modelling spacetime

A realistic cosmological simulation must be built on an expanding spacetime. The standard
approach, compatible with the current concordance model is to implement a flat FLRW
metric to model the expansion. This expansion depends only on the initial conditions,
namely the initial ratio of matter density to dark energy and is governed by the Friedmann
equations(Friedman, 1922), derived from general relativity. These differential equations
describe the evolution of the scale factor 𝑎 in terms of the contents of the universe. As the
different components evolve differently with time, there are different epochs in the evolution of
the scale factor. Because the dark energy density is constant, while the matter density evolves
with 𝑎−3 (from simple geometrical considerations), late times are generally dark-energy

http://www.magneticum.org/simulations.html
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dominated, with the accelerated expansion that cosmological surveys have measured (Riess
et al., 1998). It is generally convenient to move the metric to the background and decouple the
evolution of the local densities from it (as this doesn’t influence the overall metric evolution).
This is done by switching to a co-moving frame i.e. all quantities are computed relative to a
coordinate frame that expands with the metric. For further computational convenience, the
integration based on the Gadget-3 code (Springel, 2005) additionally transforms the time
coordinate, so the velocities and accelerations used are in an altered reference frame.

2.3 Initial conditions

As we will see later, initial conditions play a very important role in structure formation. It
is therefore imperative to set up realistic starting conditions for cosmological simulations.
First and foremost a proper power spectrum for the initial perturbations must be employed.
Magneticum implements a WMAP7 power spectrum (Komatsu et al., 2011) with a spectral
index n=0.963. There are various ways of obtaining realistic initial conditions. One of
the most common methods involves setting up a glass-like state by initializing a random
distribution with the appropriate amplitude spectrum and letting it evolve with negative
gravity until a stable configuration is obtained. This glass state is then used as the matter
distribution at the first time step, typically with a redshift 𝑧 ≈ 100 − 200. After setting up in
this way, gravity is given free reign.

2.4 Gravity

The Gadget-3 integrator discretizes the action of gravity on the dark matter (or baryonic)
fluid into the N-body interaction of representative particles. Unlike grid based codes, this
means that the resolution is given by the number of particles the total mass is discretized
into instead of a well defined spatial resolution. It is of great importance to balance the
force resolution against computational efficiency to allow the forces to be resolved enough
for modelling the short-range evolution accurately, while being able to afford large enough
box sizes for realistic large-scale structures to form. To this end, Gadget-3 uses a hybrid of
two different methods for the force calculation, effectively splitting the potential a particle
feels into a long range and a short range contribution. The Tree method (Barnes & Hut,
1986) is optimized for short range interaction. As its name indicates it puts particles on
a hierarchical tree by subdividing the volume into cells recursively, stopping when each
subdivision contains a single particle. To calculate the force on a single particle, a tree
walk is performed: Cells that are sufficiently far away such that their substructure doesn’t
influence the calculation above a certain threshold are counted as single "particles". If the
error threshold is exceeded, its sub-cells are considered individually. This method calculates
short range forces very precisely, whilst sacrificing accuracy for precision at long range. The
long range force terms are therefore considered via the Particle-Mesh (PM) method. Here
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the long range potential is calculated by putting particles on a grid and evaluating the Poisson
equation in discrete Fourier space. With the Fast-Fourier-Transform (FFT) method this can
be done very efficiently. Combined with a cutoff scale to distinguish long range and short
range, these two force calculation methods give the Tree-PM scheme used by Gadget-3.
To avoid ’collisions’ of particles with singular contributions, the potentials are additionally
softened to a characteristic scale 𝑟𝑆. Once the forces calculated, particles are advanced a
time step via the KDK-Leapfrog integration scheme, which makes use of half-timesteps to
ensure symplectic integration. A number of sophisticated algorithms, e.g. adaptive timesteps
further improve efficiency to allow for large volumes.

2.5 Hydrodynamics

In addition to purely gravitational forces, baryonic particles also experience hydrodynamical
forces. As the modelling of the gravity already involves a discretization of mass into individual
fluid parcels, the Lagrangian SPH method is used. Here the gas continuum is once again
discretized into fluid parcels or ’particles’, whose hydrodynamical interaction is calculated
from the continuum by smoothing particles over a characteristic length scale 𝑟ℎ𝑠𝑚𝑙 via a kernel
function. We will see an example for this, when reconstructing the continuum in order to
obtain the accretion fields in chapter 4. In contrast to dm particles, the baryonic component
is discretized unevenly, with 𝑟ℎ𝑠𝑚𝑙 dependent on the local density, resulting also in particles
of different masses.

2.6 Sub-grid models

Baryonic gas can cool radiatively and consequently form stars, which in turn provide pressure
feedback via the various supernova explosion channels and enrich the gases present, altering
e.g. their X-ray properties. Furthermore they can experience energy injection from AGN,
which are present in most galaxies. These feedback effects can significantly alter the dynamics
of objects up to galaxy cluster scale (Heinrich et al., 2021) and must therefore be considered.
Modern cosmological simulations treat these effects in so-called sub-grid models, as they
take place on scales far smaller than individual gas particles. The Magneticum suite applies
sub-grid models for cooling and subsequent star formation (Springel & Hernquist, 2003),
chemical enrichment from the stellar populations (Tornatore et al., 2007),(Dolag et al., 2017)
and black hole feedback (Hirschmann et al., 2014) among others to model the sub-grid
behaviour of baryonic gas as realistically as possible.

2.7 Subfind

Our later analysis involves the outskirts of haloes that are identified by the on-the-fly structure
finding algorithm SUBFIND (Springel et al., 2001). For identifying haloes this code employs
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a Friends-of-friends (FOF) algorithm. This algorithm groups dm particles with a distance
smaller than a characteristic linking length 𝑏. The name indicates the transitivity of the
grouping: If particle A is within one linking length of particle B and particle C is within one
linking length of particle B, they all are part of the same group. With an appropriate choice
of linking length (usually 𝑏 = 0.2 times a cosmology dependent factor (Dolag et al., 2009))
and a minimal number of particles criterion, one finds realistic virialized objects this way.
SUBFIND also employs a saddle-point finding algorithm on the smoothed FOF density field in
order to identify substructures within the FOF groups. For the scope of this thesis however,
we are only considering central haloes.

2.8 Boxes

The Magneticum suite of simulations offers up a variety of simulated volumes with different
resolutions plus a set of 15 simulations where the cosmological parameters within ΛCDM
have been varied. The fiducial cosmology uses the WMAP7 parameters (Komatsu et al.,
2011). Below, Table 2.1 provides an overview of the boxes used in this thesis with the most
important properties listed:

Box run Ω0 Ω𝑏 𝜎8 𝐻0 𝑓𝑏 𝐿𝑏𝑜𝑥[Mpc/h] 𝑁𝑝 res

1a

C1 0.153 0.0408 0.614 66.6 0.267

896 2 ∗ 15123 mr

C2 0.189 0.0455 0.697 70.3 0.241
C3 0.200 0.0415 0.850 73.0 0.208
C4 0.204 0.0437 0.739 68.9 0.214
C5 0.222 0.0421 0.793 67.6 0.190
C6 0.232 0.413 0.687 67.0 0.178
C7 0.268 0.0449 0.721 69.9 0.168
C8 0.272 0.0456 0.809 70.4 0.168
C9 0.301 0.0460 0.824 70.7 0.153
C10 0.304 0.0504 0.886 74.0 0.166
C11 0.342 0.0462 0.834 70.8 0.135
C12 0.363 0.0490 0.884 72.9 0.135
C13 0.400 0.0485 0.650 67.5 0.121
C14 0.406 0.0466 0.867 71.2 0.115
C15 0.428 0.0492 0.830 73.2 0.115

2b -
0.272 0.0456 0.809 70.4 0.168

640 2 ∗ 28803 hr
2 - 352 2 ∗ 15843 hr
4 - 48 2 ∗ 5763 uhr

Table 2.1: The Simulation boxes used in this thesis. Parameters from (Dolag, 2022)

2.9 Outside the box: Summing up

We have seen how cosmological simulations with hydrodynamics can model the physical
processes of both dark matter and baryons efficiently. An overview on the modelling of
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background cosmology, gravity, hydrodynamics, sub-grid feedback, enrichment and structure
finding was provided specifically for the Magneticum suite of simulations. A selection of
boxes and runs within this suite was introduced with their respective specifications. In the
next chapters we shall put these boxes to good use to learn about the physics between the
cosmological scales.
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Chapter 3

The Emergence of Large-Scale Structure

The rich structure we can observe in our universe today originated from the tiniest of pertur-
bations in the primordial matter density field. A relic of the quantum fluctuations (Mukhanov,
2005) in the inflationary stages of the universe, these perturbations and their evolution have
shaped our understanding of the geometry and contents of our universe significantly. The
aforementioned discovery of the CMB in the mid-1960s (Penzias & Wilson, 1965) provided
us with direct access to these perturbations by measuring a nearly homogeneous background
of microwave radiation from the time at which photons could first escape the hot plasma
filling the universe 𝑡𝑟𝑒𝑐. The perturbations in this background have since been measured to
great precision (Planck Collaboration, 2020) and provide valuable insights about the early
configuration of density fluctuations in the universe. Our goal for this chapter is to develop
some intuition for how the structures that are going to feature heavily in the following chap-
ters (i.e. filaments, galaxy clusters and galaxies) come to be and evolve from these initial
perturbations. It is naturally not going to be an exhaustive review of the incredibly rich
and diverse field of cosmic structure formation, but I aim to give an overview on where the
pure theory can take us and where simulations have to step in. Furthermore there is a set
of parameters (𝛿,𝜎2,𝐷,𝛿𝑐) in structure formation, that will be integral to understanding the
theoretical model for the mass accretion rate of haloes implemented in the next chapter, so I
hope to physically motivate those parameters and with them the model.

3.1 The Primordial Gaussian Field

The initial conditions of the post-recombination epoch that emerge from inflationary theory
and the radiation dominated era are mathematically described by Gaussian random fields (e.g.:
Mukhanov, 2005). This means that an arbitrary sampling of 𝑁 points 𝜁 = {𝛿1, 𝛿2, . . . , 𝛿𝑁 }
in the overdensity field (𝛿(𝒙) =

𝜌(𝒙)−𝜌
𝜌

) will be distributed according to the multivariate
Gaussian distribution

𝑝(𝜁) =
exp(−1

2 𝜁
𝑖𝑀−1

𝑖 𝑗 𝜁
𝑗 )√︃

(2𝜋)𝑁 det𝑀
(3.1)
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where 𝑀𝑖 𝑗 = ⟨𝛿𝑖, 𝛿 𝑗 ⟩ is the covariance matrix of the field samplings (using Einsteins sum
convention). This is because the probabilities are pairwise independent and individually
Gauss distributed at each point. Equation 3.1 illustrates an important property of Gaussian
fields: They are completely characterised by their second moment, the two-point correlation
function defined by

𝜉 ( |𝒙𝒊 − 𝒙 𝒋 |) = ⟨𝛿𝑖, 𝛿 𝑗 ⟩ (3.2)

where it has been assumed, that the random field additionally fulfils ergodicity in order to
seamlessly switch from ensemble averages to spatial averages. In other words, the spatial
correlations (𝜉) have to decay quickly enough as a function of separation 𝑟 to maintain
statistical independence between separate volumes, since we have been handed only one
universe and thus would struggle to compute ensemble averages. An important quantity is
given by the diagonal terms of the matrix:

𝜎2 = 𝜉 ( |𝒙𝒊 − 𝒙𝒊 |) = 𝜉 (0) = ⟨𝛿𝑖𝛿𝑖⟩, (3.3)

the variance of the density field, providing a measure for the amplitude of fluctuations.
Another function sufficient for the specification of a Gaussian random field is the power
spectrum 𝑃(𝑘), the Fourier transform of the correlation function, expressing the relative
weight of modes with scale 𝜆 = 2𝜋

𝑘
. This is commonly assumed to have a power-law shape

(e.g. Harrison (1970))
𝑃(𝑘) = 𝐴𝑘𝑛 (3.4)

where n defines the tilt of the power spectrum. In the linear regime the velocity and potential
fields 𝒗(𝒙) and Φ(𝑥) are connected to the density field by simple equations (we will write
them down below). Applying these, one finds that those fields are also Gaussian random
fields. The importance of this property cannot be stressed enough, it will be the basis of many
of the theoretical considerations in the following chapters. An interesting first consequence
is the relationship between the power spectra of these fields, namely:

𝑃𝛿 (𝑘) ∝ 𝑃𝒗(𝑘)𝑘
−2 ∝ 𝑃Φ𝑘−4 (3.5)

The powers of k arise due to the order of spatial derivatives present in the linear equations
connecting the perturbations Equation 3.8. According to this relation the perturbations in
the three parameters are tilted towards different scales, with the density perturbations most
sensitive to the smallest scales and the potential perturbations most sensitive to the largest
scales. An especially simple realization of a density perturbation field is one with 𝑛 = 1, the
so-called Harrison-Zel’dovich Approximation Harrison (1970). Its ideation precedes the idea
of inflation, which predicts a spectral index close to 1 (Mukhanov, 2005), by over a decade
and was motivated by the observed large scale structure to be later justified by inflation.
Considering Equation 3.5 it can be seen that in this case

𝑃Φ ∝ 𝑘−3. (3.6)
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It then follows that the variance of the potential, or its two-point correlation function at scale
0

𝜎Φ
2(𝑘) ∝

∭
𝑑3𝑘𝑃Φ(𝑘) =

∭
𝑑3𝑘𝑘−3 ∝

∫
𝑑𝑘

𝑘
=

∫
𝑑𝑙𝑜𝑔(𝑘) × 1 (3.7)

or in other words the potential fluctuation per logarithmic bin is constant in k. The most
precise measurements of this power spectrum demonstrate only a slight red-tilt away from
this idealized case:𝑛𝑠 = 0.9665 ± 0.0038 (Planck Collaboration, 2020), so this convenient
spectrum is a very reasonable assumption for first-order estimates. After having specified
the most important properties of the initial density fields, we can now let them evolve under
gravity:

3.2 Linear Theory

If the energy density of the universe were entirely homogeneous, the gravitational field
would also be. In such a universe, gravity would isotropically act against the dark energy
component and slow down expansion. In the concordance model that would mean an eventual
total dilution of the contents of the universe and increasingly accelerated expansion. The
previously discussed minute density fluctuations save us from this boring reality in which we
would have never come to be: Local differences in gravity due to local density fluctuations
lead to locally reduced expansion and a thus a slight deviation from the Hubble flow. This
in turn enhances the local overdensity (albeit in the beginning by not diluting as quickly as
surroundings), in turn slowing down expansion even further, entering a feedback loop. Once
a certain critical threshold is reached, the overdensity completely decouples from the Hubble
flow and begins to collapse, eventually forming the astrophysical objects we can observe
today. As the rich get richer, so do the poor get poorer: Initial underdense regions begin to
expand above the mean expansion rate, in turn emptying out even further, ending up in the
inverse feedback loop to the overdensities. In the following I will outline the mathematical
formalism that describes this evolution to first order. The general structure is inspired by van
de Weygaert (2018), which provided a very helpful and extensive overview for this formalism.

Fluid equations It is possible to completely write down the equations governing the devel-
opments described above. They are the (inviscous) fluid equations in co-moving coordinates

𝜕𝛿𝑖

𝜕𝑡
= − (1 + 𝑤𝑖)

𝑎
∇ · (1 + 𝛿𝑖)𝒗 (Continuity) (3.8a)

𝜕𝒗

𝜕𝑡
= − (𝒗 · ∇)𝒗

𝑎
− ¤𝑎𝒗
𝑎

− ∇𝜙
𝑎

(Euler Equation) (3.8b)

∇2𝜙 = 4𝜋𝐺𝑎2(1 + 3𝑤𝑖)𝜌𝑖𝛿𝑖 (Poisson Equation) (3.8c)

Where 𝑖 denotes the 𝑖-th component (in ΛCDM 𝑖 ∈ {𝑚, 𝑟,Λ}) and 𝑤𝑖 represents the
parametrization of the equation of state for each component (𝑝𝑖 = 𝑤𝑖𝜌𝑖). As we mainly
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consider pressureless dark matter in the following we are going to drop the pressure terms
containing 𝑤𝑖 eventually. In Equation 3.8 𝒗 and 𝜙 are the peculiar velocity and the potential
perturbation i.e. those are already perturbative quantities with the backgrounds ( ¤𝑎𝒙, the
Hubble flow and 1/2𝑎 ¥𝑎𝑥2, the background potential) already subtracted. In the early stages
(and later on large scales as we shall see), the perturbations 𝛿, 𝑣, 𝜙 are small, so the terms of
second order can be ignored. Once they have grown to 𝛿 ≈ 1, this linear approximation is no
longer valid and structures enter the non-linear regime. For now we will continue with the
linearized fluid equations and drop the non-linear terms in Equation 3.8.

𝜕𝛿𝑖

𝜕𝑡
= − (1 + 𝑤𝑖)

𝑎
∇ · 𝒗 (Continuity) (3.9a)

𝜕𝒗

𝜕𝑡
= − ¤𝑎𝒗

𝑎
− ∇𝜙

𝑎
(Euler Equation) (3.9b)

∇2𝜙 = 4𝜋𝐺𝑎2(1 + 3𝑤𝑖)𝜌𝑖𝛿𝑖 (Poisson Equation) (3.9c)

One of the most convenient simplifications linear theory brings can be seen by decomposing
the perturbations into their Fourier modes:

[𝛿, 𝑣, 𝜙] (𝒙) =
∫

𝑑𝒌

2𝜋
[𝛿, 𝑣, 𝜙] (𝒌)𝑒−𝑖𝒌𝒙 (3.10)

Inserting into Equation 3.9a, Equation 3.9b, Equation 3.9c it becomes apparent, that the
modes do not mix in the linear regime, i.e. modes behave independently! It can also
immediately seen how, once the linear regime is left, the non-linear terms (e.g.: (𝒗 ·∇)𝒗) mix
the modes, transferring power between the scales and complicating the analysis significantly.

Linear perturbations of dark matter during matter domination One of the easiest
concrete cases we can apply the apparatus developed above to is the linear evolution of dark
matter perturbations during the era from 𝑧𝑒𝑞 = 3411 (Planck Collaboration, 2020) onwards
when matter starts to dominate over radiation due to the relative decay of density Ω𝑟 (𝑎)

Ω𝑚 (𝑎) ∝
1
𝑎

and dark energy is still subdominant, so the only fluid component to consider is matter.
During these early times the assumption of linearity is also most robust, because the density
contrast has not grown much at all scales. Since the matter component is dominated by the
(at least in the concordance model) pressureless dark matter component, the pressure terms
in the continuity and Poisson equations (Equation 3.9a, Equation 3.9c) can also be neglected,
leaving us with strongly simplified versions of the linearized equations:

𝜕𝛿𝑑𝑚

𝜕𝑡
= −1

𝑎
∇ · 𝒗 (Continuity) (3.11a)

𝜕𝒗

𝜕𝑡
= − ¤𝑎𝒗

𝑎
− ∇𝜙

𝑎
(Euler Equation) (3.11b)

∇2𝜙 = 4𝜋𝐺𝑎2𝜌𝑑𝑚𝛿𝑑𝑚 (Poisson Equation) (3.11c)
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Taking the divergence of the Euler equation and combining it with the Poisson and the
continuity equation leads to a second order differential equation in time:

𝜕2𝛿

𝜕𝑡2
=

3
2
Ω0𝑎

−3𝐻0
2𝛿 − 2𝐻 (𝑡) 𝜕𝛿

𝜕𝑡
(3.12)

This gives us a lot of information already: Since the only derivatives in Equation 3.12 are
w.r.t. time, the density perturbations can be expressed with the time dependent and the
position dependent part separated: 𝛿(𝒙, 𝑡) = 𝐷 (𝑡) ∗ 𝑓 (𝒙). So the spatial configuration of the
density perturbations remains exactly the same (n.b.: in co-moving space) and the contrast
grows at every point in space at the same rate in linear theory! Furthermore due to the order
of the PDE, there are two solutions 𝛿+ and 𝛿− so that the general solution can be written
as a linear combination of the two parts 𝛿 = 𝛿+ + 𝛿−. The growth/decay rate of the density
contrast is governed by Equation 3.12 and therefore depends on the time dependence of the
scale factor, which in turn is determined by the background cosmology.

Linear density evolution EDS universe To go all the way in at least one special case, we
can now solve Equation 3.12 for the simplest case that still retains some degree of realism for
the epoch we are considering: The Einstein-de-Sitter universe is a flat FLRW universe with
only a matter component (Ω0 = 1). In this case the Friedmann equations for the evolution of
the scale factor give us

𝑎(𝑡) = (3
2
𝐻0𝑡)

2
3

(3.13)

Putting this into Equation 3.12 gives

𝜕2𝛿

𝜕𝑡2
=

2
3𝑡
𝛿 − 4

3𝑡
𝜕𝛿

𝜕𝑡
(3.14)

This looks like a power law differential equation and is indeed solved by:

𝛿(𝑡) ∝ 𝑡 2
3 𝑓 (𝒙) + 𝑡−1 𝑓 (𝒙) (3.15)

which explains why we named the two solutions with superscripts + and -: There is a growing
mode and a decaying mode in the evolution of the density contrast. With this solution it is
now possible to estimate the density contrast of a given perturbation to linear order. However
this estimate will only not be way off mark during the very early stages of structure formation,
if we want a more realistic description, we have to leave the cozy simplicity of linear theory.

3.3 Beyond Linear Theory: Press-Schechter

The large scale astrophysicists’ way to handle the fact that linear theory fails once overdensities
grow enough to collapse is to simply cut off our ignorance of what happens afterwards and



16 Chapter 3 – The Emergence of Large-Scale Structure

count these regions as collapsed objects. A simple but very successful formalism was
developed by Press and Schechter in the 70s (Press & Schechter, 1974):

3.3.1 Roughly counting: Press-Schechter Formalism

The approach of Press and Schechter is as follows: We have a Gaussian random field that
evolves with the linear equation (𝛿(𝑡, 𝒙) ∝ 𝐷 (𝑡)𝛿(𝑡𝑖, 𝒙)). Once a region reaches a certain
overdensity 𝛿𝑐 (a little more on that later) it starts to collapse and eventually form what we
would call a halo. What is now the Mass of this object? One idea is to smooth our initial
density field by convolving with a spatial filter (usually the spatial spherical top hat filter
𝑊 (𝒙, 𝑅) = 3

4𝜋𝑅3Θ(𝑅 − 𝑟)). In other words we "take the average" inside a filter volume,
ironing out all smaller fluctuations. This gives the fluctuations at scale 𝑅, which can be
easily associated with a mass 𝑀 , given by multiplying the mean density with the volume of
the filter, for the spherical top hat 𝑀 = 4𝜋

3 𝜌𝑅
3. Conveniently this smoothed field at mass

scale 𝛿𝑀 will still be a Gaussian random field, at least when convolving with the top-hat or
Gaussian filter. The quantities defined in section 3.1 will have their corresponding partners
for these smoothed fields. Most importantly, the variance of the smoothed field is defined as

𝜎2
𝑅 = 𝜎2

𝑀 (𝑅) = ⟨𝛿𝑅𝛿𝑅⟩ (3.16)

The conserved gaussianity also implies that the likelihood of the density smoothed at mass 𝑀
exceeding the critical value in a single point is given by the univariate Gaussian distribution
(compare Equation 3.1):

𝑃(𝛿𝑀 > 𝛿𝑐) (𝑥) ∝
∫ ∞

𝛿𝑐

𝑒
− 𝛿𝑀

2

2𝜎𝑀
2√︁

2𝜋𝜎𝑀2
(3.17)

. The central postulate of Press-Schechter (PS in the following) theory is that this probability
is exactly equal to the fraction of the total mass in the universe that has collapsed to haloes
with mass > 𝑀 . It should be noted that everything here is a function of time, so both sides
of the equation will evolve, as the density contrast grows according to linear theory. From
this basic assumption the following mass function can be derived (Press & Schechter, 1974):

𝑑𝑛

𝑑𝑙𝑛(𝑀) (𝑀, 𝑧)𝑑𝑀 =

√︂
2
𝜋
𝜌
𝛿𝑐 (𝑧)
𝜎2𝑀

𝑒
− 𝛿𝑐

2 (𝑧)
2𝜎2 (𝑀) 𝑑𝜎 (3.18)

It marked an important milestone in our understanding of cosmic structure and can make
surprisingly good predictions to this day. Taking this equality to the extreme however, a
paradox arises: Setting 𝑀 → 0, 𝜎𝑀 diverges and the integral in Equation 3.17 evaluates to
1/2. So according to the PS formalism only 1/2 of all mass is contained in haloes. This was
initially fixed by introducing a "fudge factor" of 2. To find out why, we have to extend our
PS formalism.
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3.3.2 A little less roughly counting: Excursion Set theory and Extended
Press-Schechter

To understand the logic behind the formalism we will lay out in this section, it is a good
idea to first get an intuitive understanding for why the PS-way was off by a factor of 1/2:
From the Gaussianity of the density field, we can immediately infer that the likelihood of an
underdensity is exactly equal to that of an overdensity, in other words 𝑃(𝛿 < 0) = 𝑃(𝛿 >
0) = 1/2. So with the fudge factor in the PS formalism, we take into account that the mass
initially in underdensities will either eventually also condense into (arbitrarily small) haloes
or might even be part of an initial overdensity at a larger scale and thus end up inside a halo
anyway.

Bond et al. (1991) developed an elegant formalism expanding on the PS ideas, but also
capable of accounting for all the mass without introducing heuristic factors. Its foundation
is laid by the concepts of Excursion Set Theory, a branch of probability theory concerned
with the likelihood of a stochastic process (e.g. a random walk) performing an excursion,
i.e. crossing above or below a certain threshold. In our case that threshold is given by the
critical density. The general idea of this formalism is the following: Consider an infinitesimal
mass element 𝛿𝑚 at some point 𝒙𝛿𝑚 in space. To find the largest possible structure this mass
element is a member of, we can once again use the idea of smoothing the density field at a
scale 𝑅: Starting at 𝑅 = ∞, the field 𝛿𝑅 (𝒙𝛿𝑚) is 0 as the density in the infinitely extended
filter is the mean density of the universe by definition. As we decrease our filter radius the
smoothed overdensity for our mass element will deviate from 0. At some scale 𝑅1 (this can be
arbitrarily small) the smoothed density will exceed the critical threshold, in other words at this
scale a halo of mass 𝑀1 will eventually collapse and 𝛿𝑚 will be a part of this halo. If we now
track and plot the value of the smoothed density field 𝛿(𝒙𝛿𝑚) we will see a trajectory similar to
the one shown in Figure 3.1. Here the smoothing radius has been substituted for the variance
𝑆 = 𝜎𝑅

2, which in the relevant cases is a monotonically decreasing function of R, so increasing
S means decreasing R (Bond et al., 1991). This trajectory resembles a single realization of a
random walk. In fact it can be shown (Maggiore & Riotto, 2010) that if we switch the filter

from a spherical top hat function to a sharp k-space filter 𝑊 (𝑘) =


1 𝑘 < 𝑘𝑐

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
due to

the uncorrelated random phases of the modes in a Gaussian random field, this is a Brownian
(or Markovian) random walk with statistically independent steps. In this picture then, the
fraction of mass in haloes with 𝑚 > 𝑀 is given by the fraction of all trajectories that lie
above the critical threshold. These probabilities are relatively easy to calculate due to the
Brownian nature of the trajectories and the Gaussian nature of the underlying density field.
The keen eyed reader might have noticed, that this is PS all over again. Indeed, all we have
done so far is to formalize PS within the framework of excursion set theory. This has gained
us a new viewing angle on the fudge factor issue: What PS fails to capture are the trajectories
that up-cross the threshold at some 𝑆1 and then down-cross it again at some 𝑆2 > 𝑆1. If you
would probe a mass element with such a trajectory at a scale 𝑆3 > 𝑆2 you would come to
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Figure 3.1: Single trajectory in 𝛿 − 𝑆 space. Figure 3 from Maggiore & Riotto (2010)

the conclusion that it is not contained in a halo with mass 𝑚 > 𝑀3. However between 𝑆1

and 𝑆2 the trajectory does exceed the threshold, so the mass element must be contained in a
halo with mass 𝑚 > 𝑀1 > 𝑀3, which is clearly contradictory. With the added tools of the
Excursion Set framework it now becomes much clearer, how to mitigate the issue: We simply
need to account for those missed trajectories somehow. Here a realization is useful: Each
of these "problematic" trajectories has a dual that can be constructed by mirroring its course
around the threshold starting at the point of first crossing. Since the original curve is below
the threshold at the scale 𝑆3 where we initially missed it, the mirrored curve is guaranteed
to be above it. Furthermore the Markovian nature of the walk ensures that all trajectories
have the same probability. So we can simply count each curve that can be found above the
threshold twice and will automatically have accounted for its mirror curve we are blind to at
the given resolution due to it down-crossing again at a higher S. This is then the justification

Figure 3.2: Figure 4 from Bond et al. (1991) demonstrating the distribution of trajectories that need
to be considered. The black tail of the Gauss curve marks all trajectories that are above the threshold
at the scale S of evaluation plus all trajectories that crossed earlier, but down-crossed again before S.

for the ad-hoc factor introduced by Press and Schechter. By calculating the mass fraction
in a mass range 𝑚 > 𝑀 as the fraction of trajectories that had their first up-crossing at any
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𝑚 > 𝑀 , the EPS formalism arrives at exactly the same result, namely the same halo mass
distribution function, but it has the big advantage that it does so self-consistently. Still we add
additional problems by now losing a solid definition of the filter mass, a flaw that was already
recognized by Bond during the conception of the formalism (Bond et al., 1991). Haloes tend
to not be infinitely extended sinc-like density wave packets (the Fourier transform of the sharp
k-space filter). There are statistical remedies to this that involve computing the non-Brownian
random walks a spatial top-hat gives with Monte Carlo techniques (Bond et al., 1991), but the
standard approach is to just ignore this problem and use the spherical top hat filter mass for
a sharp k-space filter, inevitably introducing inaccuracies. Still on EPS’ shoulders rests the
method developed by van den Bosch (2002), which will be centrally featured in my numerical
analysis in the next chapter.

3.3.3 A hierarchy of clumps: From clusters to galaxies – or vice versa?

As in the next chapter we move on from the frozen-in-time 𝛿, 𝑆 picture of EST to a temporal
evolution we should take the time for a short intermezzo on – well, time. We can introduce
dynamics to the picture of a single EPS trajectory by remembering that in the linear stage,
all modes grow independently from each other. So for the single trajectory in Figure 3.1 this
means that as time progresses from 𝑧1 to 𝑧1 + 𝑑𝑧 the trajectory is simply lifted upwards by a
factor of 𝐷 (𝑧1+𝑑𝑧)

𝐷 (𝑧) at every S (as long as we don’t put too much value into what happens beyond
𝛿𝑐). This can equivalently be viewed as the threshold being lowered, while the trajectory
remains constant, sampling lower and lower parts of the curve above the critical density and
into collapse. So there will be a natural hierarchy of collapse in the sense that modes with
initially higher perturbation amplitude will collapse earlier than perturbation modes with
lower initial amplitude. What this hierarchy looks like, depends on the cosmological model,
mainly on the shape of the power spectrum Equation 3.4. In the standard cosmological model
with 𝑛 = 1 or very nearly so, the power spectrum is in general tilted towards lower scales
(remember that increasing k means decreasing spatial wavelength). So we expect a bottom-up
collapse scenario with matter clumping first on smaller scales and large scales forming at
later times. This is where the picture of a Merger Tree comes from, an example of such a tree
constructed from a numerical simulation is shown in Figure 3.3. It shows how the final halo
at 𝑧 = 0 is assembled step-by-step from smaller haloes which have formed first. A top-down
scenario would produce dramatically different merger trees with the large haloes forming first
and then fragmenting increasingly into smaller objects. As we will see in the next section,
the idea of a merger tree is woven into the van den Bosch (2002) model, especially in the
way, the actual algorithm is set up.

3.3.4 The Mass accretion history of dark matter haloes

The van den Bosch (2002) model for Mass Accretion Histories (MAH from now on) basically
aims to reconstruct the merger trees discussed before from the statistics of the density field.
Because in the EPS formalism all mass is contained in some collapsed structure, that may
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Figure 3.3: Example of a merger tree from a cosmological simulation. Only the most massive 42
branches are shown, with the x-labels indicating the branch number, redshift on the y-axis (decreasing
in the positive y-direction) and the icon size indicating the mass at a given redshift. Figure 10 from
Tweed et al. (2009).

be arbitrarily small, this accounts for both smooth accretion and proper mergers with similar
masses. The central idea of the model is built on the fraction of trajectories with their first
up-crossing in 𝑆, 𝑆 + 𝑑𝑆 :

𝑓 (𝛿𝑐, 𝑆)𝑑𝑆 ∝ 𝛿𝑐

𝑆3/2 𝑒
− 𝛿𝑐

2
2𝑆 𝑑𝑆 (3.19)

To extract an assembly history from the EPS formalism the first question one has to ask is:
What is the conditional probability that a mass element contained in a halo of mass 𝑀1 at
the present time was in a halo of mass 𝑀2 at some earlier time? This represents one step
into the past on the merger tree from the present time. One can already guess that to trace
the history of a halo back in time we have to ask this question again and again going back
in time until we have achieved a sensible degree of fragmentation. Translating the question
above to the language of Excursion Set Theory, what we are looking for is the conditional
probability of a mass element having had its first up-crossing at a scale 𝑆2 with a critical
density of 𝛿𝑐 (𝑧2) given that it had its first up-crossing at a scale 𝑆1 at a lower redshift 𝑧1
and critical density 𝛿𝑐 (𝑧1) (as before the linear increase of density contrast is described by a
corresponding lowering of 𝛿𝑐). But this is simply the probability that a trajectory starting at
(𝑆1, 𝛿𝑐 (𝑧1)) has its first up-crossing of the barrier 𝛿𝑐𝑧2 at 𝑆2! This is given by Equation 3.19:

𝑃(𝛿𝑐 (𝑧2), 𝑆2 |𝛿𝑐 (𝑧1), 𝑆1) = 𝑓 (𝛿𝑐 (𝑧2) − 𝛿𝑐 (𝑧1), 𝑆2 − 𝑆1) (3.20)

A merger tree for an object of mass 𝑀0 can then be reversely constructed by repeatedly
drawing progenitor masses from Equation 3.20 one time step in the past at redshift 𝑧1 > 𝑧0

until the largest progenitor mass is larger or equal to the mass of the initial mass minus the
sum of all progenitor masses. At this point the largest mass is taken to be the mass of the
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halo at 𝑧1 and the procedure is repeated at 𝑧2 > 𝑧1 et cetera. This amounts to fracturing the
"Most Massive Progenitor" (MMP) at each time step according to the statistics of the density
field, then finding the ’new’ MMP. van den Bosch (2002) now computes the average MAH
as a function of present day mass by summing for each 𝑀0 and each time step 𝑧 over 1000
realizations of the statistical process outlined above. To obtain the "universal MAH" van den
Bosch (2002) then fits these statistically constructed MAHs, resulting in the following form
for the universal history ⟨Ψ⟩ B 𝑀 (𝑧,𝑀0)

𝑀0
:

𝑙𝑜𝑔⟨Ψ(𝑀0, 𝑧)⟩ = −0.301
[
𝑙𝑜𝑔(1 + 𝑧)
𝑙𝑜𝑔(1 + 𝑧 𝑓 )

] 𝜈
(3.21)

From this I then computed the theoretical mass accretion rate, as suggested by the author:

¤𝑀𝑡ℎ (𝑀0, 𝑧) = 𝑀0
𝑑Ψ

𝑑𝑡
(3.22)

. The shape of this accretion rate in mass predicts a completely self-similarity for the mass
accretion. We will explore how well this assumption holds against numerical simulations with
added baryonic physics in the next chapter. The parameters 𝑧 𝑓 and 𝜈 are fitting parameters,
however the author provides a prescription to calculate them from cosmological parameters
alone. I followed this prescription to obtain the parameters for the simulation cosmology
used.

3.3.5 From spherical cows to ellipsoidal ones

So far we haven’t physically motivated the threshold parameter 𝛿𝑐 and just assumed it to be
a constant of some value. In the standard PS and EPS approaches this parameter is derived
from the spherical top hat collapse model (Gunn & Gott, 1972). In this simplified model of
the non-linear collapse of an overdensity initially co-moving and concentric spherical shells
detach from the background expansion at the so-called turnaround time 𝑡𝑡𝑎 and collapse
completely self-similarly i.e. without any shells crossing until they all reach 𝑟 = 0 at the
same time 𝑡𝑐𝑜𝑙𝑙 . 𝛿𝑐 is then the linearly extrapolated density of an initial overdensity at the
time it (theoretically) reaches 𝑟 = 0. It should be noted that because of the self-similarity of
the model, this value does not depend on the initial size of the region. In the spherical top hat
model 𝛿𝑐 is really a constant. However, as much as there are no spherical cows, there are no
spherical top hats in the universe. A second order solution is the ellipsoidal collapse model
by Sheth et al. (2001). Adapting the EPS formalism for this collapse model takes the tidal
fields correctly into account by implementing a variable density threshold 𝛿𝑐 (𝑒, 𝑝) with e,p
the initial ellipticity and prolateness. It has been shown to significantly reduce the deviation
between EPS models (Springel, 2004). Unfortunately for such a variable threshold, similar
to the case of a spherical top-hat, the nice analytical solutions vanish and one has to resort
to statistical methods to calculate the mass function (Sheth et al., 2001). Still the universe
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refuses to be linear and spherical, as will be highlighted even more in the following, so we
have little choice but to follow into non-linearity and numerics if we want to be accurate.

3.4 The cosmic web

When the results of some of the earliest 3d cosmological N-body simulations were published,
a key feature of non-linear structure formation emerged for the first time (Klypin & Shandarin,
1983): From the 2d sheet-like structures at this time already known as "pancakes", which
constitute the first large-scale structures to emerge, evolved an intricate network of filaments
connecting the largest structures (These simulations were set up on large scales only, using
cell-sizes of 5 Mpc Klypin & Shandarin, 1983), with very underdense domains called voids
in between. We will come back to these fascinating regions later on, for now we shall be
concerned with the matter-rich regions. At this point in time structure formation theory was
divided into two disjoint domains (Bond et al., 1996). One was the domain of hierarchical
structure formation we have discussed so far, extending from cluster scales to galaxy scales.
The other was the theory of super-cluster structure, with its foundation the Zel’dovich
approximation (Zel’dovich, 1970) for quasi-linear collapse of large scale structures. While
the former, as we already saw, was a bottom-up approach the latter is a top-down theory.
From it the "pancakes" that were used as initial conditions for simulations like Klypin &
Shandarin (1983) arise and it was later found that it had the potential to take us a long way
towards a realistic description of non-linear large scale structure termed the Cosmic Web
(Bond et al., 1996). For this reason I will outline this approximation and its connection to the
cosmic web briefly. It is not essential for the work in the upcoming chapter but will become
important again, when we dare to gaze into the void.

3.4.1 Approaching the web: The Zel’dovich approximation

So far we have considered fluid dynamics from an Eulerian point of view, i.e. formulated the
motion of the fluid from the perspective of a fixed point in (co-moving) space. An alternative
perspective is the so-called Lagrangian view: We label a fluid elements with a certain mass
with their initial positions (in the literature often denoted 𝒒 𝒊) and follow their trajectories
through space. The core statement of the Zel’dovich approximation is a simple connection
between Eulerian and Lagrangian coordinates (Zel’dovich, 1970), which can be formulated
in terms of co-moving coordinates:

𝒙(𝒒, 𝑡) = 𝒒 + 𝐷+(𝑡)𝒔(𝒒) (3.23)

Here 𝒔(𝒒), the initial displacement critically only depends on the initial coordinates and the
motion of the fluid element continues along the direction of initial displacement. Furthermore

𝒔(𝒒) ∝ −∇𝜙𝑙𝑖𝑛 (3.24)
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In other words, the displacement vector is directly proportional to the linearly extrapolated
gravitational potential. Mass conservation then implies

𝜌(𝒙, 𝑡)𝑑𝒙 = 𝜌(𝑡)𝑑𝒒 (3.25)

leading to
𝜌(𝒙, 𝑡)
𝜌(𝑡) = det( 𝜕𝑥𝑖

𝜕𝑞 𝑗
)
−1

(3.26)

Expressing this in terms of the Eigenvalues 𝜆𝑖 of the deformation tensor − 𝜕𝑠𝑖
𝜕𝑞 𝑗

we get from
𝜕𝑥𝑖
𝜕𝑞 𝑗

= 𝛿𝑖 𝑗 + 𝐷+(𝑖) 𝜕𝑠𝑖𝜕𝑞 𝑗
:

𝛿(𝒙, 𝑡) + 1 =
1

(1 − 𝐷+(𝑡)𝜆1) (1 − 𝐷+(1)𝜆2) (1 − 𝐷+(𝑡)𝜆3)
(3.27)

From this beautiful result, the general anisotropy of large-scale collapse immediately arises:
In general there will be an ordering of the Eigenvalues 𝜆1, 𝜆2, 𝜆3. This means that the
density contrast will grow the fastest along the direction of the eigenvector with the largest
corresponding 𝜆, equivalent to the shortest initial axis, forming the "pancake" mentioned
earlier. After the collapse along the eigenvector with the second largest eigenvalue, an
elongated filament forms, to finally collapse along the third direction to a spherical node.
Even though this simple approximation has its shortcomings and must be expanded on by an
analysis of the singularities (the simplest example of such a singularity is our pancake) that
arise within Lagrangian perturbation theory (Hidding et al., 2014), we can already derive the
basic elements of the cosmic web from it. For the scope of this thesis, this shall be enough.

Figure 3.4: Density field evolved with Zel’dovich dynamics. The web-like structure is clearly visible.
Figure 1 from Hidding et al. (2016)

3.5 Not complicated enough: Enter the Baryons

So far we have limited our considerations to dark matter. As the topic of this thesis is precisely
the influence of baryons on large scale structure, we cannot leave them out of the picture.
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Now for the large scale dynamics of the previous section the impact of baryonic processes is
minimal (e.g. Cui & Zhang, 2017), so the picture outlined here is largely unaffected. However
for smaller scales and in the highly non-linear environments of collapsed structures, they
become increasingly important. A key distinction between dissipationless dark matter and
baryonic gas is the ability of gas to form outflows. Up to the point where the combined matter
density exceeds the critical density and an object starts to collapse, the baryonic overdensities
simply grow along with the dark matter perturbations (for a concise review of pre-in-fall
baryonic physics see van den Bosch, 2020 or Kimmig, 2022). Once the overdensity collapses
however, as opposed to dark matter, baryons can shed angular momentum by radiative cooling,
leading to more condensed cores in the centers of haloes while the dark matter reaches a
more extended virial equilibrium configuration.

Shocks As the gas falls in on an already virialized overdensity either following a dark matter
filament or from a void region, it will at some point encounter gas that has settled to the center
and unlike the pressureless dark matter form violent accretion shocks at the boundaries of
collapsed haloes (Bertschinger, 1985). These accretion shocks can then combine with shocks
from halo mergers to form so-called MA-shocks that can exceed the virial surfaces of these
haloes by factors of up to 3 (Zhang et al., 2020). Gas that is heated to extreme temperatures
𝑇 ≈ 108K at such caustics can undergo adiabatic expansion, forming a hot and out-flowing
(or expanding) atmosphere.

Galactic Feedback Other channels of energy re-injection for baryons are AGN, capable of
driving powerful outflows in galactic haloes (Santoro et al., 2020) and supernova feedback
(Nguyen & Thompson, 2022), which is driven by the formation and evolution of stars from
cool gas condensing in galactic disks. These feedback mechanisms can also change the
chemical composition and observational properties of the gas, as supernovae create high-Z
elements with their relative abundances dependent on the explosion channel (Kobayashi et al.,
2020) and outflows distribute these elements into the haloes. This makes metallicities a viable
tracer for outflows in both simulations and observations.

Filamentary heating Another important feature of baryonic physics at the intermediate is
heating during filamentary in-fall. Due to shocks at the surface of and within filaments, gas
can already be in the warm phase before it gets close to the virial surface of collapsed haloes.
The high density in the filament and consequently short cooling time can allow gas in-falling
in filaments to penetrate the shocks at cluster boundaries and inject hot gas into the cluster
centers, significantly impacting their dynamical states (Zinger et al., 2016).

Overall the added complexity of baryonic physics makes numerical simulations a vital
asset if we want to understand the role of gas in the coupling of haloes to large scale structures.
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3.6 So far from the theorists: Summary

We have followed the process of structure formation from small fluctuations in an initial
density field to the complex beauty of the cosmic web. Starting from the simplicity of the
linear evolution in the earliest stages of structure formation, we then applied the results of
this theory to the hierarchical collapse models such as Press & Schechter (1974). A key
concept was the framework of Excursion Set Theory, viewing the density field frozen in
time and filtered at varying smoothing radii as a trajectory in an abstract plane of 𝛿, 𝑆.
This framework helped us to build our models more self-consistently (Bond et al., 1991)
and was the crucial motivator in our approach to derive semi analytical accretion histories
from cosmological parameters alone with the model of van den Bosch (2002). This will
be compared to numerical results that include non-linear dynamic in the following chapter.
Going up in scale we then explored the emergence of a rich network of filaments and nodes.
We found a theoretical foothold in the Zel’dovich approximation which helped us gain a
first understanding of the organization of matter on the largest of scales. It will be useful once
more in the second part of this thesis. Finally we turned to the baryons and briefly reviewed
the processes and features we will try to find in the simulated gas maps in the following
chapter. The most important imprints of baryonic physics are the shocks that form through
accretion and merging in the outskirts of haloes.
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Chapter 4

Feeding the hungry: The in- and outflows
of Magneticum haloes

4.1 Flowing in the cosmos

As we have seen in the previous chapter given slight perturbations in its earliest stages, the
cosmos is all but static, even if the general expansion of space is accounted for. This chapter
will be dedicated to the large scale flows that shape (and are shaped by) the developing
structures in the universe we can observe today. In the linear regime this connection of
flow fields to structures is particularly simple (recall [add cross reference]). From this
simple picture it is immediately clear that the evolution of the velocity field must follow
the evolution of the density field to first order, albeit the full picture is more complex. To
visualize this, we can watch the evolution of the velocity field with redshift: Figure 4.1
shows this evolution for the dark matter component in the 352 Mpc hydrodynamical Box2
from the Magneticum suite of simulations. It can be seen how the velocity field traces the
formation of the cosmic web. Considering the apparent non-linear nature of the velocity
field in most regions of the slice illustrates the argument for the necessity of a numerical
approach made in chapter 2 once more. The geometry of the streams leads to an intuitive
classification of the different collapse modes mentioned in chapter 3 (albeit in 2d projection):
The initial sheet-like structures (2d surfaces) first collapse along their shortest dimension to
form the narrow filaments (streamlines converging in every direction but one) which then
finally collapse into point symmetry configurations called nodes (streamline convergence
points). Voids are effectively anti-nodes with all streamlines leading away from them. They
emerge as the darkest and most linear regions in the figure, as they become more and more
devoid of matter. We will return to these fascinating environments in chapters 5 and 6.

In Figure 4.1 only the evolution of the dark matter component is shown, which is colli-
sionless in the standard ΛCDM model of the universe. When dark matter particles fall onto
an overdensity, they cannot dissipate their energy efficiently, leading to extended dark matter
haloes in galaxies and clusters of galaxies. In contrast the baryonic matter components are
slowed down rapidly in violent shocks at the borders of collapsed structures, converting part
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Figure 4.1: Evolution of the co-moving velocity field in Box2 Magneticum. A thin z-slice through
the mid-plane was selected. The heat map shows the magnitude of the co-moving velocities, while
the overdrawn streamlines indicate the flow direction. New plots coming up

Figure 4.2: Histogram of the absolute velocities for the different matter components in Magneticum

of their gravitational energy to thermal and ultimately radiative energy. For this reason the
gas components tend to be less extended in phase space. The high velocity tail in Figure 4.2
highlights this bigger spread of dark matter. From these two basic examples and from the
relations laid out in chapter 3 it is clear that the peculiar velocity field is ripe with information
about the formation and evolution of structure. In this chapter we shall make use of this
by probing the field on the scales at which the linearity of the Mpc to Gpc velocities and
the chaotic non-linearity of already collapsed or collapsing objects like clusters and galaxy
filaments meet. Especially the gas will be of interest, since the boundaries of massive objects
mark the transition zone where baryonic physics starts to really matter.
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4.2 To answer a question, you first have to ask it: Goals

It is widely maintained that, while galaxy cluster-scale haloes retain, to a certain degree, the
self-similarity of the initial Gaussian perturbations even in the presence of baryonic physics,
galaxies break this self-similarity (Böhringer et al., 2012). One of the central questions we
will address in this chapter is whether imprints of the initial self-similarity can also be traced
by the flow fields in the outskirts of these objects, as well as if and at what scale these
imprints might vanish. As the relatively robust scaling laws measured with galaxy clusters
allow for a much easier analytical treatment than for galaxies, another closely related question
is how well models based on analytical theory like the van den Bosch (2002) universal mass
accretion history can trace the actual physical processes happening at the cluster to group
boundary scale. This is an important question to consider when comparing these theoretical
calculations to observations in particular and might help in shedding light on possible biases
and deviations to keep in mind when comparing theory to observation.

The second question is concerned with what goes out: Recently there have been hints
at streams of matter entering voids (Vallés-Pérez et al., 2021) (though these inflows would
still be heavily outweighed by the general outflow from these regions of course). This begs
the question whether it is at all possible for bound structures to push out matter so far that
it might unbind and feed the galaxies left behind in the general exodus during the formation
of the void. In the standard picture of galaxy evolution these void galaxies are considered
the key to improve our understanding of the processes involved in shaping the rich zoo of
galaxies we observe today. Their salient feature from an evolutionary perspective is that they
can effectively be taken as decoupled from environmental effects. Unbinding outflows from
neighbouring structures would be an interesting correction to this picture and necessitate
further investigations of these objects. Furthermore the balance of inflows and outflows can
be directly linked to the energy budget of the clusters, so a quantification of this balance can
potentially provide insight into the dynamical states of these objects.

If present it is also important to consider the mechanisms that might drive such outflows:
The supersonic in-fall of material onto a collapsed object like a galaxy cluster creates high
Mach-number shocks at their peripheries. When runaway shocks from mergers undergone by
the cluster encounter these accretion shocks, they are hypothesized to combine to a long living
merger accelerated accretion shock (MA-shock, (Zhang et al., 2020)) that can propagate far
outside the virial radius of the cluster, heating the gas it passes through. The expansion of this
shock-heated gas could constitute an effective outflow at the cluster boundaries. At the group
to galaxy scale other mechanisms become increasingly important. In galaxies, star forming
activity triggers type-II supernovae from massive short-lived stars at early times and type-
Ia supernovae later on. Both explosion modes generate significantly enriched gas outflows
compared to cosmic averages, with the two modes discernible by the amount of iron produced
(Kobayashi et al., 2020). Additional outflows might come from AGN jet feedback. Each of
these channels creates outflows from gas at a specific processing stage: The gas heated by the
shocks in galaxy cluster outskirts has most likely been processed in the in-falling filaments,
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supernova driven outflows transport highly enriched gas out of their respective galaxies and
AGN driven outflows tend to comprise of the gas that is cold enough to collapse to the central
black hole. For this reason, gas temperature and metallicity are excellent tracers of outflow
mechanisms at play.[citation needed]

To try and answer the questions outlined above, it is therefore imperative to measure the
magnitude of these mass flows as well as their spatial distribution and the properties of the
gas that comprises them, which is what we set out to do in this chapter.

4.3 Measurements: Setup and parameters

There are a number of different ways and proxy quantities to determine the accretion rate
of galaxies and clusters in both simulations and observations (for exemplary methods see X
for simulated and Y for observed clusters), but our goal here is to properly reconstruct the
flows and then obtain an accretion rate from them. Because the simulations used in this work
integrate their hydrodynamics with SPH methods, computing the gas (and dark matter) fluid
continuum inversely to the SPH discretization is the most self-consistent way to calculate the
simulated flows with the required spatial resolution. All post-processing in this section was
executed with a modified version of the Map-Making program SMAC (Dolag et al., 2005),
which provided a basic framework for calculating the fields at spherical shells I then expanded
on. Instead of time (effectively spatially) averaging the flow over a spherical shell, in this
work I calculate the instantaneous flow through the surface with the combined information
from the smoothed density and velocity fields. In general this flow is given by∫

𝑉

∇ · 𝑭 𝑑𝑣 =
∮
𝜕𝑉

𝑭 · �̂� 𝑑𝑎 (4.1)

integrating either the divergence of the velocity field over a given volume or the normal
component over a bounding surface, with the Gaussian theorem connecting the left and right
sides of the equation.

4.3.1 Reconstructing the fields

The field contribution of the j-th particle at the i-th generalized volume element can be
calculated as follows:

𝛼𝑖 ∗ 𝑓𝑖 ∗ 𝑤( |𝒓𝑖, 𝑗 |) (4.2)

where 𝛼𝑖 is a geometry factor encoding the overlap of the particle with the pixel and 𝑤(𝒙) is
the smoothing kernel. In this work I used the three dimensional cubic spline kernel:

𝑤(𝒓) = 𝑤(𝑟) =


8
𝜋
(1 − 6𝑟2(1 − 𝑟)) 𝑟 ≤ 0.5

16
𝜋
(1 − 𝑟)3 0.5 < 𝑟 ≤ 1

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

(4.3)
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Cluster ID 𝑟𝑣𝑖𝑟 [𝑘 𝑝𝑐/ℎ] 𝑀𝑣𝑖𝑟 [1010𝑀⊙/ℎ]
5 2346.1 113282.0
20 2177.5 90571.7
53 425.3 674.7
384 202.0 72.3

Table 4.1: The four "poster child" haloes.

In principle this works for any field and can be done both for voxels and pixels. The
fields considered in this work are the density 𝜌, the density weighted radial component of
the gas velocity 𝑣𝑡 , 𝑣𝑟 and the density weighted temperature and metallicity 𝑇, 𝑍𝑋 where
X represents the different gas components (in the Tornatore et al. (2007) model 𝑋 ∈
{𝑡𝑜𝑡𝑎𝑙, 𝐻𝑒, 𝐶, 𝐶𝑎, 𝑂, 𝑁, 𝑁𝑒, 𝑀𝑔, 𝑆, 𝑆𝑖, 𝐹𝑒, > 𝐹𝑒}).

Geometry

Because of the tendency of haloes to be spherical on large scales it is reasonable to collect the
flow into a sphere centered on the halo. This is done by numerically making use of the r.h.s.
of Equation 4.1. A sphere with radius 𝑟 is tessellated into surface elements of equal angular
dimensions (and thus also area) using the versatile Healpix1 scheme (Gorski et al., 2005).
For every surface element 𝑑𝑎 the normal vector is then, in reasonable approximation, just the
radial unit vector at the center of the surface element 𝒓 (𝒙𝑝𝑖𝑥). From this the differential flux
follows easily: 𝑑Φ = 𝑭(𝒙𝑝𝑖𝑥) · 𝒓 (𝒙𝑝𝑖𝑥)𝑑𝑎. The mass flow through a single pixel can thus be
calculated as:

𝑑 ¤𝑀 = 𝜌(𝒙𝑝𝑖𝑥)𝒗(𝒙𝑝𝑖𝑥) · 𝒓 (𝒙𝑝𝑖𝑥)𝑑𝑎 (4.4)

and the accretion or decretion rate ¤𝑀 at a given radius 𝑟 is the sum over all pixel contributions.
Additionally a full-sky map is returned for each of the components at every radial bin. During
the course of this chapter 𝑁𝑝𝑖𝑥 will be 196607.

Sample

To probe across a wide range in mass I selected a total of 319 Subfind halos in 11 bins, 29
haloes per bin. Masses range from 1012𝑀⊙ to 1015𝑀⊙ covering a spread from very small
groups/heavy galaxies to the heaviest clusters in the simulation. The haloes in the mass range
of 1012−1013𝑀⊙ are taken from the smaller, higher resolution Box4 (uhr, 68 Mpc side length),
while the high-mass range of 1013 −1015𝑀⊙ is covered by the larger, less resolved Box2b (hr,
909 Mpc side length), with the 1013𝑀⊙ bin present in both boxes. The data in this chapter,
unless indicated otherwise, is taken from snap031 (hr)/ snap116 (uhr), corresponding to a
redshift of 𝑧 = 0.25. Each halo is sampled at 20 radii in the range 𝑟 ∈ [1.2, .., 5] × 𝑟𝑣𝑖𝑟 for the
velocity, density, temperature and metallicity fields. For a more thorough individual analysis
I selected four "poster child" haloes, representing dynamically relaxed clusters, dynamically
perturbed clusters,heavy groups and galaxy-like objects respectively, as seen in Table 4.1.

1http://healpix.sourceforge.net
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4.4 A sky full of flows: The spatial distribution of mass
accretion and decretion

Structure formation theory sees accretion onto clusters and groups happen mainly along the
directions of the large scale filaments as seen in Figure 4.1 (even though there are possible
differences between clusters and groups regarding in-fall symmetry according to studies like
(Gouin et al., 2022)). This means that the geometry of these flows is mainly dictated by the
peculiar gravity. In contrast, the outflows we could reasonably expect from haloes are driven
by distinctly different processes like feedback from the member galaxies and MA-shocks, with
the common denominator being, that they are regulated and shaped by the thermodynamical
properties of the gas. Therefore one would expect to see a difference also in the spatial
distributions of these two modes, with the colder in-flowing gas being more concentrated
in the filaments and the hotter out-flowing gas more homogeneously distributed. With the
analysis pipeline outlined in the previous section, it is straightforward to verify this from our
simulation data, since the calculated healpix maps provide this information in addition to the
total flow. This chapter is a detailed case study of the "poster child" sub-sample introduced
in Table 4.1.

Field analysis at a fixed radius As a first example, we will consider the most massive halo
of this subset, cluster 5: Figure 4.3 shows a general agreement with the hypothesis above:
While the inflow regions align with the dense filament contours, the outflow regions spare
these areas, showing a fairly spherically symmetric distribution otherwise. The temperature
map shows that the gas inside the gravity dominated filaments is colder than the outflowing
gas, which reaches temperatures above 108𝐾 , comparable to the hot gas phase in cluster
centers (Gouin et al., 2022). Interestingly the temperature hot spots accumulate in the
out-flowing regions just outside the filaments. This is where one would expect to find the
accretion shocks generated by the rapid in-fall lending weight to the idea that these shocks, or
their interaction with merger shocks to form MA-shocks drive material outwards by heating
the cold gas, subsequently inducing adiabatic expansion. Enrichment shows no pronounced
preference for in-falling or out-flowing regions and is largely homogeneously distributed,
with a few hot spots around pronounced over-densities most likely in-falling haloes within
the filaments. This hints at an early enrichment process within the filaments, with the enriched
gas then being distributed by the shocks. I will return to this point later to investigate the
precise enrichment mechanisms for clusters.

Radial evolution of the fields: The giants To investigate the radial extent of the features
in the outskirts of the halos it is necessary to map the radial evolution of the fields.

Figure 4.4 shows the same fields at 5 different radial bins. The radial extent of the
outflowing component is striking. At 2𝑟𝑣𝑖𝑟 its distribution is nearly unchanged while at 3𝑟𝑣𝑖𝑟
it begins to fade in some regions, almost completely vanishing at 4𝑟𝑣𝑖𝑟 . This extent and the
the typical blossom-like structure (see 3𝑟𝑣𝑖𝑟) created by localized shocks hint very strongly at
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(a) Density (b) Velocity

(c) Metallicity (d) Temperature

Figure 4.3: Full sky field components for cluster 5 at 1.2𝑟𝑣𝑖𝑟 . The 8𝜌 over-density and 1𝜌 contours
are overlaid onto each map. The density map is drawn with histogram color weighting to enhance
contrast, as it is shown only to visualize the meaning of the contours. Here and in the following 𝑣𝑟 < 0
will mean inflow and 𝑣𝑟 > 0 outflow.

an MA-shock as described in Zhang et al. (2020). Cluster 5 is a fairly relaxed halo (Kimmig,
2022), so it can be argued that the shock would have had time to travel this far outwards
since the last merger event accelerating the accretion shocks. A comparison with cluster 20
– the dynamical counterpart to 5 – confirms this: Here the shock features are less extended
as most likely not as much time has passed since the last merger shock was formed. Both
cluster 5 and 20 show a strong drop in the temperature after the shock fronts are left behind,
with only occasional hot spots from 3𝑟𝑣𝑖𝑟 most likely associated with smaller haloes in-falling
within the filaments. The metallicity also loses its homogeneity further out as the enriched
gas distributed by the shocks gets left behind. It accumulates in the vicinity of the filaments
but outside of the overdensities, forming an enriched and diffuse atmosphere for the dense
spines of the cosmic web. The clear emergence of the general cosmic web structures at large
radii for both clusters should also be read as a warning to keep in mind for the following
sections: The flows we calculate with the methods outlined above are halocentric, however
at sufficiently large radii the motion we are registering is not necessarily only correlated to
the halo anymore, but to the general neighbourhood it exists in. One clusters outflow might
well be another’s inflow and vice versa in these regions, which makes interpretation not
always straightforward as we shall see. This is another reason for also computing the gas
temperature and metallicity as the additional information can help disentangling contributions
from different environments.
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(a) Density (b) Velocity (c) Metallicity (d) Temperature

Figure 4.4: Maps of the four fields at radial slices for cluster 5. 𝑟 ∈ [1.2, 2.0, 3.0, 4.0, 5.0]𝑟𝑣𝑖𝑟
.

Radial evolution of the fields: The dwarfs To highlight the differences between the scales,
Figure 4.6 and Figure 4.7 show the same radial evolution at the low mass end of the sample.
The density structures in Figure 4.6 and Figure 4.7 appear to contradict a self-similarity of the
surrounding web structure down to those scales. At the outer radii the web-like morphology
seen around the clusters is not observed. Since the sampling procedure selected only parent
haloes, this difference can not be explained by the groups and galaxies being embedded in
larger overdensities. The cosmic filaments these groups and galaxies most likely live in
appear to not have a fractal property. Whether this is due to resolution limits is unclear at this
point. Temperatures and velocities are significantly lowered for haloes 53 and 384 compared
to the massive clusters in the previous section. Both effects are closely linked and mainly
caused by their much shallower potential wells. The correlations seen between flow direction
and density at the spherical surface are much less clear for the two smaller haloes. This is
also true for the link between outflows and temperature enhancement.

Symmetry In the previous sections, it became apparent that the out-flowing gas component
is more homogeneously distributed on the sphere than the inflow, because the latter is
organized in filaments while the former is distributed by shock heating and subsequent
thermal gas expansion. To both check whether this perceived discrepancy is quantifiable
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(a) Density (b) Velocity (c) Metallicity (d) Temperature

Figure 4.5: Maps of the four fields at radial slices for cluster 20. 𝑟 ∈ [1.2, 2.0, 3.0, 4.0, 5.0]𝑟𝑣𝑖𝑟
.

and also true for the sample at large, I used the power spectrum of the spherical harmonic
functions. This idea was inspired by the symmetry analysis traditionally used for the CMB
and the work by Gouin et al. (2022), who used a similar method on simulated clusters in 2D
projection, notably finding a distinction between the symmetry of the hot gas in clusters vs.
groups. The spherical harmonics are defined by:

Δ𝑆2𝑌𝑙𝑚 = −𝑙 (𝑙 + 1)𝑌𝑙𝑚, (4.5)

namely they are the eigenfunctions of the Laplace operator on the sphere (for a concise
summary see Bartelmann et al. (2014)). As such they span the space of square-integrable
functions on the sphere. This means that every scalar function on the sphere 𝑓 ∈ 𝐿2

𝑆2 can be
expressed as a scalar combination of the spherical harmonics:

𝑓 (𝜃, 𝜑) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑎𝑙𝑚𝑌𝑙𝑚 (𝜃, 𝜑) (4.6)

The 𝑎𝑙,𝑚 are the vector components of the base function, which are obtained, like vector
components usually are, by projecting the function onto the respective spherical harmonic.
These spherical harmonics have different angular symmetries (an intuitive rule of thumb is
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(a) Density (b) Velocity (c) Metallicity (d) Temperature

Figure 4.6: Maps of the four fields at radial slices for cluster 53. 𝑟 ∈ [1.2, 2.0, 3.0, 4.0, 5.0]𝑟𝑣𝑖𝑟
.
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(a) Density (b) Velocity (c) Metallicity (d) Temperature

Figure 4.7: Maps of the four fields at radial slices for cluster 384. 𝑟 ∈ [1.2, 2.0, 3.0, 4.0, 5.0]𝑟𝑣𝑖𝑟
.
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that the 𝑌𝑙𝑚 varies on an angular scale of 2𝜋
𝑙

, so the monopole is homogeneous, the dipole
varies on a 2𝜋 wavelength etc. ), so to measure the "power" in a certain symmetry, one has
to calculate the power spectrum of the multipole expansion:

𝐶𝑙 = ⟨|𝑎𝑙𝑚 |2⟩ (4.7)

The python library healpy (Zonca et al., 2019) provides a framework for handily computing
the power spectra of healpix maps. In order to define the total deviation from the monopole
distribution, I define the quantity

𝜁 =
300∑︁
𝑙=1

𝑙 (𝑙 + 1)𝐶𝑙 (4.8)

as a measure of the power in the moments higher than the monopole. Figure 4.8 shows

Figure 4.8: Excess asphericity for the sample of haloes computed from the mass in- and outflow
fields. The distributions of the individual haloes at each bin are shown at the mean bin mass. The
1013𝑀⊙ bin is present in both Box4 and Box2b, hence it is doubled. The distribution of the Box4 bin
is shown with transparency.

what we saw before by visual inspection: In general the samples inflow component has more
power in the aspherical modes than the outflowing component due to the in-falling particles
being concentrated in the filaments. Gouin et al. (2022) found the WHIM phase to be more
symmetrical in groups than in clusters. Figure 4.8 shows this trend to some degree, although
it should be noted that this figure does not split the gas by phase but by direction of the
radial velocity, so a direct comparison should be taken with a grain of salt. Especially the
out-flowing components, which reach temperatures of around 10𝑘𝑒𝑉 in the cluster outskirts
according to Figure 4.3,Figure 4.4 dilute this picture, as they are partially in the hot gas
regime and might not be traced well by the WHIM. Unfortunately there is no analysis of the
symmetries of the hot gas outside of 𝑅200 in the work by Gouin et al. (2022).

Another interesting observation from Figure 4.8 is the transition bin between the two
resolutions. Groups at the 1013𝑀⊙ bin appear to have more power in higher-order symmetries
in the uhr box than the hr box. A possible explanation is that filamentary structures are
resolved to finer detail in the higher resolution run, generating a more aspherical distribution.
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This could be tested in future analysis by applying appropriate smoothing to the data to
eliminate the additional noise. It is worth bearing in mind however, that especially the high
resolution bin samples haloes at the very top of the mass range of the small uhr box, so in
addition to the low number statistics, it also has a significant scatter in mass, so this offset
should not be over-interpreted. Follow-up studies to these exploratory results are necessary
and can shed more light on the symmetries in the gas components from Magneticum haloes.

4.5 Must what goes in indeed come out? – Accretion rates
across the scales

Mass flows at low redshift Now that we have studied the spatial distribution of individual
velocity fields, let us return to the first question posed in the introduction: Figure 4.9 shows

Figure 4.9: In- and outflow rates over the entire mass range of bins as compared to the theoretical
accretion rates obtained with the model described in van den Bosch (2002). The theoretical gas curve
is computed from dark matter with the stellar mass fraction fit from Andreon (2010).

a distinct mass trend for both flow modes with a relatively constant slope for each radial bin.
The inflow curves imply a strong self-similarity in the accretion of haloes, remarkably so
down to the galaxy mass range and across the resolution border at 1013𝑀⊙. The outflow curve
noticeably flattens out towards higher masses with increasing radii, indicating a higher outflow
generation efficiency for smaller objects. This is possibly due to the different mechanisms
that can drive the outflows at the two extreme ends of the scale. While the large galaxy cluster
can only drive outflows by thermal effects, galaxies also have AGN and Supernova-driven
outflows that could be able to extend further out radially than the expanding hot atmospheres of
the clusters. Additionally the deep potential well of a heavy cluster might prevent out-flowing
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more efficiently. An alternative explanation for the persistence of outflows at low masses is a
smoother transition into environmental flows for these halos. Because of hierarchical collapse
smaller halos have formed first, The general shape of the van den Bosch (2002) model is
reproduced quite well by the sample, which is remarkable given the simplistic assumptions
(purely spherical collapse) it is built upon.

Mass flows at high redshift Accretion processes undergo permanent evolution across time,
so it is a good idea to ask how the picture of Figure 4.9 changes once we take a step (or
in this case rather a leap) back from 𝑧 = 0.25 to 𝑧 = 4.23. In general accretion rates are
expected to increase with increasing redshift (compare the redshift dependency of the MAH
[cross reference to theory] or for a numerical study Fakhouri et al. (2010)). For the following
analysis the mass bins were kept from 𝑧 = 0 to allow for a direct comparison with Figure 4.9
and to avoid tracing back individual haloes via the merger tree. This however means that the
halo sample is necessarily different from the first plot, since the 319 haloes in that sample
would be at an earlier stage in their evolution and thus in lower mass bins. Unfortunately
this goes along with lowering statistics even further due to the lower abundance of high mass
objects in both boxes, leaving the sample at only two bins, representing the seeds from which
the clusters and heavy groups in the low redshift sample grow. Results should therefore be
interpreted with caution here, they serve as a first look at the temporal evolution of the scaling
relations found in Figure 4.9. At high redshift, the mass accretion rate is systematically higher

Figure 4.10: In- and outflow rates over the entire mass range of bins with the theoretical curves as
before at a higher redshift. The transparent lines indicate the data at 𝑧 = 0.25.

than at low redshift, as expected. The inflow rates are significantly higher than the theoretical
curves predict, sitting on top of the dark matter curve. The former is hardly surprising as the
model used to compute stellar fractions was obtained from low-redshift observations only,
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severely overestimating the stellar fractions (and underestimating the gas fraction) at high
redshift. Furthermore the accretion rate in the 1012𝑀⊙ mass bin exhibits a shallower growth
radially than at late times, remarkably so while the 1013𝑀⊙ bin shows a radial evolution more
consistent with the low redshift sample. Interestingly, the outflow at the innermost radial bin
is unchanged compared to the low redshift sample implying that the formation pathway of
these outflows remains the same across time. The radial drop in outflow rate is faster than at
late times, most likely because the shocks have not had time to traverse the outskirts as far,
lending further weight to the model of shock driven outflows.

Metallicities and temperatures As discussed in the introduction to this chapter, gas tem-
perature and metallicity are important signifiers of the driving mechanisms of the outflows
and the origins of the gas they comprise of. In the maps of section 4.4 some differences
between the temperature and metallicity distributions at the opposing end of the mass scale
already became apparent. For a more quantitative view of this, Figure 4.11 shows these two
quantities across the sample in the same way as Figure 4.9 did for accretion rates. In general

Figure 4.11: Metallicities and Temperatures of the in- and outflow dominated regions. The outflowing
curves terminate at large radii for the most massive bins, because these clusters tend to be completely
inflow dominated pixel-wise.

Figure 4.11 demonstrates outflowing gas to be more metal rich and hotter than in-flowing
gas, albeit the inflow temperature is not consistent with a cold gas inflow as we have already
seen in Figure 4.4. This agrees with the findings of Zinger et al. (2016), who registered that
the in-falling gas had already reached 106𝐾 at the virial surface of clusters (albeit at z=0, so
it is interesting that the value at z=0.25 is almost exactly the same), consistent with the values
in Figure 4.11. This warm, rather than cold, inflow can penetrate into the inner regions,
contributing to the complex gas dynamics within the virial surface of the cluster (Markevitch
& Vikhlinin, 2007).
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A notable exception to the general rule that outflowing gas is hotter than in-flowing gas
is the outermost region at the low mass end of the sample with the inverse true from 4𝑟𝑣𝑖𝑟
outwards. Considering the temperature map of the lightest "poster child", this is likely
caused by environmental contamination. Figure 4.7 shows an isolated hot spot in this region,
enveloped by the density contour. So the hot "inflow" for these objects could just be the
diffuse outflow of their next larger or equally sized neighbour. This would also explain the
crossing of the temperature curve in the high mass end of box4. The haloes at 1013𝑀⊙ have
fewer possible neighbours with sufficient mass to significantly impact the temperature of the
dense and cold inflow. Between the mass bins, temperatures follow a steep scaling law closest
to the halo centres, which flattens out at larger radii, most likely also due to sampling the
general environment in those regions. As already hinted at in the comparison of Figure 4.4,
Figure 4.5, Figure 4.6 and Figure 4.7, metal profiles are relatively flat, with a slight increase
towards higher masses and notably a maximum at the bin with 2 ∗ 1014𝑀⊙ in both in- and
outflowing regions. The origin of this peak is unclear, further analysis might shed light on
this apparent saturation at large masses. Overall there is a noticeable increase of metallicity
with radius, which can also be ascribed to an increased sampling of the surrounding cosmic
web.

4.6 How are you enriching yourselves?– Flow metallicity
evolution

It was briefly mentioned in the introduction that the precise type of enrichment can shed light
on the history of the gas, namely whether it was enriched at early time or late time. This
is due to the different supernova enrichment channels producing different types of metals:
The late-type SNIa from white dwarf progenitors produce significantly more heavy elements
like iron compared to the early type SNe from core collapse. This is shown in Figure 4.12
which plots the metal fraction as a function of species for the different supernova models. The

Figure 4.12: Enrichment models from de Plaa et al. (2007) Figure 9.

metal model by Tornatore et al. (2007) implements these enrichment models for the simulated
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gas in the Magneticum boxes, therefore the relative amount of metal species present in the
gas can provide information about the enrichment process. We use specifically the ratio
𝑚𝑂

𝑚𝐹𝑒
(abbreviated to O/Fe in the following) to discern between early and late enriched gas.

Figure 4.13 reveals a flat O/Fe profile for most of the haloes with ratios clustered around

(a) outflow diffuse (b) inflow dense

(c) histogram

Figure 4.13: Radial O/Fe profiles for the complete sample. The healpix map has been filtered to
include only the diffuse outflowing regions with 𝜌 < 10 ∗ 𝜌 and only the dense inflow regions with
𝜌 > 𝜌.

3.6. This is overall consistent with the expectation of early enriched gas largely lacking the
Fe mass from SNIa. The inflow profiles are largely consistent with this picture, exhibiting
a slightly higher O/Fe value, likely hinting at dilution with Fe-enriched gas from the inner
regions of the cluster for the outflows. There are distinct peaks for some haloes, mostly at the
high mass end, exhibiting a steep rise and then a drop as the diffuse outflowing component
vanishes. To try and shed light on the origins of these spikes and to test the hypothesis of
an early enriched outflowing component that is first enriched while in-falling and then shock
heated, we now investigate the precise enrichment properties and histories with a detailed
case study of two example haloes. For this we turn once again to our familiar "poster child"
haloes.
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Enrichment histories: A case study for galaxy clusters First let’s take a close look at the
whole metal picture for both of these clusters:

(a) cluster 5 (b) cluster 20

Figure 4.14: Radial profiles of 𝑍 and O/Fe for all flow components. Density definitions as before.

Figure 4.14 shows a clear distinction between the two clusters: While cluster 5 proves to
be a "flat" halo, with the only significant enhancement at large radii where the environment
becomes noticeable, cluster 20 is one of the haloes identified in Figure 4.13, exhibiting a
peak both in total metallicity and in O/Fe ratio of the diffuse outflow. This hints at a more
recent induction of early enriched gas, which is consistent with the classification of the two
clusters by Kimmig (2022): Cluster 20 is one of the most dynamically active clusters in the

Figure 4.15: Accretion histories for a selected subset of the 29 clusters in the high-mass bin. Note
the difference between the two "poster children" 5 and 20. Figure 8.42 from Kimmig (2022)

highest mass bin, having only recently acquired a large portion of its mass (see Figure 4.15).
The observed enrichment crest is most likely a remnant of this recent activity. Interestingly
there is a delay between the two peaks, with the O/Fe ratio increasing first and the general
enrichment peak following behind at a distance of approximately 1.3𝑟𝑣𝑖𝑟 . Could this be an
indicator of two separate processes, causing a spike in early enriched gas first and a second
spike with a relatively higher ratio of late enriched gas, possibly from the inner regions of the
cluster? To answer this question, consider the dynamical state of the gas: Figure 4.16 shows
that the peak in total enrichment is not only located upstream of the O/Fe peak, but likely
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Figure 4.16: Radial evolution of outflow velocity and total entropy for clusters 5 and 20. The shocks
are clearly visible in the entropy profiles, while the velocities show clear discrepancies between the
haloes.

also inside the shock front, indicated by the clear entropy peak. This could be an indication
for a different origin of this particular outflow, which is clearly separate from the outflowing
peak downstream of the shock. A link to recent merger activity is possible and with the full
information of the merger trees, future work can shed more light on these peculiar profiles.
Notably the in-flowing component, dominating the total mean because of its larger density,
is flat for both clusters. The filaments that feed these two very different objects appear to be
similar in composition.

To draw back the curtain even further, a look at the real enrichment histories of the
outflowing gas is worthwhile. So far the information about the exact timeline of the metal
evolution in the cluster outskirts has been present in the radial profiles, but convoluted with
radial density profiles and possible mixing of the different layers. To isolate the temporal
evolution I chose a tracking approach: 40 particles were selected at random, though in specific
enrichment type ranges (see caption of Figure 4.17) from the diffuse outflowing component
at z=0. I then follow each of these particles back in time and record their enrichment, O/Fe
ratio and temperature at each snapshot. The much talked about early enrichment becomes
apparent: The particles that will eventually constitute the outflow fall in and get enriched at
cool to moderate temperatures where star formation is possible. They are then shock heated
at the boundary. During this heating process there is dilution with iron richer gas, as O/Fe
ratios drop to then remain relatively stable with regards to their metallicity at late times.
Cluster 5 exhibits a number of particles that are already heated at z=4 and consequently don’t
undergo significant enrichment. Unfortunately the histories of cluster 20 do not reveal a clear
separation in time between the two radial enhancement peaks observed. In general there is
not clear discrepancy to be made out between the dynamically relaxed and unrelaxed cluster.
Since the metals get enriched in similar filaments for both of these haloes, this is reassuring.
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(a) cluster 5 (b) cluster 20

Figure 4.17: Enrichment histories for clusters 5 and 20. Each line represents a single particle that
is in the outflowing component at z=0.25.Out of this set two discrete groups of particles have been
selected based on their O/Fe ratio at z=4: 20 particles with 𝑂/𝐹𝑒 ∈ [0, 2] and 20 particles with
𝑂/𝐹𝑒 ∈ [5, 7].

4.7 Summing up: What we learned about haloes

Before moving on let’s take a moment to review what we learned so far: This chapters
goal was to forward understanding of the gas accretion processes and their influence on the
outskirts of halos of a variety of sizes. We used a sample of 319 simulated haloes from
cluster to group scale and measured the flows, temperatures, densities and metallicities in
their outskirts. The general model of a warm filamentary inflow and a hot diffuse outflow
was confirmed by the spatial distribution of in- and outflows and their temperatures, though
it should be noted that the situation looks less clear at the low mass end. This difference in
spatial configuration of the in- an outflows manifests itself in the spherical symmetries of the
respective streaming fields in that in general outflows are more spherically symmetrical. A
clear mass trend was not apparent, however there is a hint at the decrease of asphericity with
decreasing mass reported by Gouin et al. (2022). Here future simulations combining the high
resolution of box4 and the size of box2b might help to clarify the trends, as there is a peculiar
jump at the transition between the two boxes.

One of the two main questions this chapter was intended to address was whether the gas
and dark matter accretion is a self-similar process. Figure 4.9 showed a striking self-similarity
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stable to scale and even resolution. The comparison to an accretion model derived from the
EPS formalism demonstrated a good approximation of simulated flows with gas accretion
by that model. The observed self-similarity of the inflows does not hold for the outflows
when going to larger radii with a deviating slope already visible at 𝑟 = 1.2𝑟𝑣𝑖𝑟 at the high
mass end. This indicates a possible discrepancy between the outflow driving mechanisms
for clusters and galaxies. Another explanation is the difference in large-scale environment
between these two types of haloes. Further investigations, with more focus on the shock
positions and properties as well as correlation of the galactic outflows with AGN jets and
starbursts that also drive powerful outflows can help shed more light on these findings. A
future study should also include a method for separating environmental inflows from halo
outflows more clearly, as this picture is quite unclear at the moment.

From the gas and temperature maps the picture of initially cold in-falling gas that gets
heated to a warm (∼ 106𝐾) phase and enriched in the filament, before being shock heated
to a hot phase at the outer boundaries of the clusters and largely maintaining its chemical
composition is solidified. This also means that the end state of the hot gas in the outskirts
of clusters could be useful as a tracer of the in-fall history of that gas. A follow-up study to
the connection between in-fall and chemical history can shed further light on this. A more
focused study on the more peculiar features we encountered in this chapter could also be useful
in furthering the understanding of the processes in the cluster and galaxy outskirts beyond
this thesis. Future simulations can also help with this process as maintaining realistic large
scale structure with adequate box sizes while improving resolution to model the dynamics
in greater detail will improve statistics and precision of these analyses. There is yet a lot to
learn about the universe in the fringe regions of overdensities.
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Chapter 5

The Presence of Absence: Cosmic Voids

“I love talking about nothing, father. It
is the only thing I know anything about.”

Lord Goring, An ideal husband by
Oscar Wilde

5.1 One man’s gain is an other’s loss: Decretion

The previous chapters have treated structure formation from the perspective of initially
overdense regions that collapse to eventually form the rich structures we observe today.
However, like most stories, structure formation has two sides: While matter accumulates
onto the growing filaments and nodes, it leaves behind growing regions of emptiness in
between those building block of the cosmic web. If we were to ignore those voids, we would
ignore the largest structures we can observe in the universe and along with them a majority
of its volume (Sheth & Tormen, 2004). To get a good first order understanding of what these
"objects" are exactly we can think of them as anti-haloes. Where haloes accrete matter, voids
decrete. Because of their large sizes (exactly opposite to haloes they grow in co-moving space
with time) and their extremely low matter densities, voids are regions of interest for many
subdisciplines of astrophysics: They can be used to analyse matter organization patterns on
the largest scales, trace local tidal fields and due to their poorness in matter and thus gravity,
provide something close to alternate universes with cosmological parameters tilted more
towards the mysterious dark energy component, allowing us to probe its properties. Because
the matter that remains in them still undergoes structure formation, albeit strongly suppressed
by the more rapid expansion, galaxies in voids are used to study formation scenarios for
these objects free (or nearly free) from environmental influences. Lastly, as we will see in
the next chapter, void shapes are a promising candidate for the independent measurement
of otherwise degenerate cosmological parameters, strengthening our understanding of the
composition of the world we live in. In this chapter we will consider these fascinating regions
from a theoretical perspective. Theory can offer us predictions as to how voids evolve and
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shed light on their typical properties like sizes and shapes. Furthermore we can derive recipes
for how to define these regions and how to extract them from data we are usually provided.

5.2 Turning the top hat inside out: Model of an isolated
void

The simplest model for the individual evolution of a void is the formation an "inverted"
spherical top-hat from an isolated, initially spherical, underdensity – basically an anti-halo
(compare section 3.3.5)(Blumenthal et al., 1992). The analysis of spherical underdensities
allows for a 1-D treatment of the dynamics, which simplifies matters significantly. While the
initially overdense regions expand slower than the background universe, eventually reaching a
maximum radius at turnaround at which point they completely decouple from the background
and collapse, the opposite is true for underdensities: A spherical mass shell centered on an
initial underdensity will expand faster than the general expansion of the universe due to the
density deficit inside it. As in the collapsing case, this effect is also self reinforcing as the
shell begins to expand in co-moving space the density inside it drops further, leading to a
peculiar acceleration relative to co-moving space. This acceleration increases closer to the
center, proportional to the density deficit, so the closer to the center of the spherical top-hat
a shell is, the faster it accelerates. Eventually this effect leads to a shell-crossing, i.e. the
shells that started inside catch up with the slower shells that started at a larger radius. This
is generally associated with the formation of a void. Since at the shell-crossing time all
shells have expanded to the same co-moving radius, similar to the collapsing shells reaching
𝑟 = 0 at 𝑡𝑐𝑜𝑙𝑙 , the void has formed an infinitely steep spherical wall at its border, which can
from this point onward be considered a single mass shell expanding outward self-similarly
(Bertschinger, 1985). Calculations show (Sheth & van de Weygaert, 2004), that at this time
the density inside the void has reached 20% of the average density of the universe (this
is contrasted by the unphysical underdensity the void would have reached, had it evolved
linearly for the same period 𝛿𝑣 = −2.81). This parameter is widely used as the maximum
density a region can have to still be considered a void by the common void finders (Sutter et al.,
2014b). The outermost mass shell of the void region has expanded by a characteristic factor of
≈ 1.7151. It is fairly intuitive, that initially spherical underdensities remain spherical. There
is however a peculiarity of isolated voids, that ensures even initially non-spherical setups to
become more spherical with time: When we talked about the ZA approximation in chapter 3,
we saw that there is a preferred collapse along the direction with the largest eigenvalue of the
tidal field, which corresponds to the shortest initial axis, leading to the structure known as a
pancake. For an initial non-spherical underdensity the argument remains exactly the same.
The only difference is that the orientation is exactly reversed, due to the inverted density
profile. This means that expansion will once again be the fastest along the shortest axis,
erasing initial asphericities instead of enhancing them. Isolated voids will always grow more
spherical as they evolve.
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Figure 5.1: Spherical evolution of two initial radial profiles. The left profile starts as a pure top-hat
depression while the right profile has the same initial density contrast, but is smoothed out for a more
realistic profile. Both initial conditions evolve to similar top-hat like final states with the characteristic
sharp ridge. Figure 3 from Sheth & Tormen (2004).

5.3 Empty in numbers: The void size function

In the previous section we have seen how voids form. Akin to asking for the statistical
properties of halos in terms of their mass (and later accretion rate) to better understand these
objects, we now want to examine the properties of voids from a theoretical perspective. A
logical starting point is to ask for the typical sizes of these objects:

5.3.1 The two-threshold excursion set formalism

The hierarchical model of structure formation and specifically the excursion set formalism
introduced in chapter 3 has not ceased to be useful for our purposes. Similar to the way we
described haloes as the result of the overdensity field crossing a certain collapse threshold,
we might think of thinking voids as results of the exact opposite effect, i.e. the density field
down-crossing a certain underdensity threshold. Similar to the overdense case, it is possible
to derive from a top-hat spherical collapse description (Bertschinger, 1985) a density of
non-linearity 𝛿𝑣 (the linear underdensity at the time when mass shells start to cross due to
the accelerated expansion inside the underdensity) that can be associated with the formation
of a void. The naive approach would now be to simply invert the EPS method: A trajectory
that first down-crosses 𝛿𝑣 at a certain filter scale is simply associated with a void of this
scale. For underdensities however, there is a decisive complication to the simple method of
counting first up-crossings within a certain scale range: For the accurate description of a halo,
the 𝛿𝑣 barrier is essentially irrelevant: A 𝛿𝑐 up-crossing inside a forming void region will
collapse regardless and for the so-called void-in-cloud scenario of a void enclosed in a larger
underdensity, the void will eventually collapse. From the perspective of describing voids with
the Excursion Set formalism, this means however, that the void-in-cloud scenario can not be
ignored, making the problem a "two-threshold" problem. For a given down-crossing of 𝛿𝑣 at
some scale 𝑅1, we need to be wary of an earlier up-crossing of 𝛿𝑐 at some scale 𝑅2 > 𝑅1.
However this can be implemented into the Excursion set formalism with relative ease (Sheth
& van de Weygaert, 2004). Essentially the fraction of volume tied up in voids of volumes
between 𝑉1, 𝑉1 + 𝑑𝑉 is proportional to the fraction of trajectories that cross 𝛿𝑣 between
𝑅1, 𝑅1 + 𝑑𝑅 (read: at a larger scale) without having crossed 𝛿𝑐. This gives size functions of



52 Chapter 5 – The Presence of Absence: Cosmic Voids

Figure 5.2: Void size functions computed by Sheth & Tormen (2004) (Fig 8.). The top panels show
the mass fraction as a pdf (left) and cdf (right). Bottom panels show number densities, pdf and cdf. In
all but the bottom right panel the colors indicate different choices for 𝛿𝑐, with 𝛿𝑣 = 𝑐𝑜𝑛𝑠𝑡. = −2.81:
Dashed red: 𝛿𝑐 = 1.06, solid black: 𝛿𝑐 = 1.686, dotted green: no void-in-cloud process, effectively
𝛿𝑐 = 0. In the bottom right panel the time evolution of the size function is shown: solid black: 𝑧 = 0,
dotted green: 𝑧 = 0.5, dashed red: 𝑧 = 1

the form shown below: Computing this fraction, one finds that 𝑉𝑣𝑜𝑖𝑑 ∝ 1−𝐷 ∝ 𝛿𝑐
𝛿𝑐+|𝛿𝑣 | (Sheth

& van de Weygaert, 2004), where 𝐷 is called the void-in-cloud parameter, a measure for how
close the two thresholds are to each other. Computing the volume fractions of all voids this
way, one finds that for the "linear" parameters 𝛿𝑐 = 1.686, 𝛿𝑣 = −2.81 the volume fraction of
voids is larger than 1 (Sheth & Tormen, 2004). This oversimplified calculation offers another
view on the cosmic web discussed in chapter 3: Voids fill most of the available universe,
leaving only the web-like structures surrounding them for the overdense regions in a foam-like
configuration. Tuning the two threshold parameters is not as trivial as in the pure overdensity
case, it is a matter of at which stage of collapse one would want to exclude a void enclosed
within a larger overdensity that is collapsing giving radically different results in terms of the
resulting void size function (Sheth & van de Weygaert, 2004). It should be noted that when
speaking of "fixing" 𝛿𝑣, 𝛿𝑐, the understanding is that this means fixing these values at 𝑧 = 0.
As we have seen in chapter 3, the actual values of these thresholds will evolve in time with
the linear scale factor 𝐷 (𝑧). Similar to the case of haloes, from the Excursion Set formalism
also arises a void hierarchy with sub-voids within voids. From considerations analogous to
the overdense scenario, one can once again deduce that smaller voids emerge first and then
merge to constitute larger voids (if they are not embedded within an overdensity) (Sheth &
van de Weygaert, 2004).
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Figure 5.3: A schematic of the void hierarchy and its signature in void zones. The ridge lines drawn
into the super-void are the remaining walls of its children. Figure 1 from Sutter et al. (2014a)

5.4 Nothing is ever really empty: Void substructure and
other complications

Though heavily underdense, voids still contain matter. Although structure formation is
heavily quenched in these regions they can still form galaxies and even larger structures like
filaments and sheets:

5.4.1 A web between the web: Structure in voids

The hierarchical formation of voids discussed in the previous section has another implication:
As smaller voids merge to form larger voids, their walls do not simply disappear. While over
time most substructure will be swept away by the rapid outflows of the large mode underden-
sity, filaments and walls can also survive within a larger super-void, given a sufficient initial
density. Signatures of such walls and filaments were already observed in early numerical sim-
ulations specifically dedicated to simulating voids (van de Weygaert & van Kampen, 1993).
Sutter et al. (2014b) call this process annexion to contrast it to proper merging which erases
the traces of the initial void hierarchy. These annexion events allow also for an analysis of the
arising sub-voids at the present time, akin to subhaloes. This is another important difference
to haloes: In mergers of large clusters significantly more information about the progenitors
is lost in the violent relaxation processes and through the baryonic physics evolved. The void
hierarchy allows for a much more primordial look at the density structure in the universe.

5.4.2 Don’t leave me here to die: Void galaxies

From the perspective of hierarchical structure formation, we expect every positive peak in
the density field to eventually collapse. This is also true for local density enhancements
embedded into a large mode underdensity like a void. Consequently even these regions
contain galaxies and sometimes even clusters. Because of the unique conditions in voids, i.e.
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the low abundance of potential merging/collision partners and the absence of replenishment
mechanisms these haloes are promising test subjects to forward our understanding of the
formation processes of galaxies and their evolution in general.

5.5 I have no sphere: The non-spherical shapes of voids

In the simple case of an isolated underdensity discussed in the sections above, we have seen
that voids are expected to grow more spherical as time proceeds, evening out any potential
primordial asphericities due to the fact that they experience a super-Hubble expansion that is
fastest along the shortest axis. However this calculus only considers isolated underdensities
and it has been shown quite early on (Icke, 1984) that for realistic conditions the opposite is
true most of the times. Voids are subject to their non-linear environments and tend to get
distorted heavily by the strong and non-uniform tidal fields in their neighbourhoods. One of
the reasons for this is, that a density depression – as opposed to a peak – can never grow in
excess of |𝛿 | = 1, as the underdensity is bounded by 𝜌 = 0 with 𝛿 =

𝜌−𝜌
𝜌

= −1. For this
reason, underdensities are relatively weak compared to the typical virialization overdensities
for haloes of 𝛿 = O(102)(Böhringer et al., 2012). As was the case with the non-spherically
collapsing filaments of the cosmic web, one way to approach the non-spherical evolution of
voids is once again the Zel’dovich approximation. Ellipsoidal cows are as before slightly
more accurate than spherical ones: For a standard ΛCDM model without baryons, Park &
Lee (2007) derived an analytical solution for the statistical distribution of void ellipticities,
defined as 𝜖 = 1− 𝑎

𝑐
, where 𝑎, 𝑐 are the longest and shortest axes of an ellipsoid respectively:

As we have seen before, in the Zel’dovich approximation the density can be written as

𝛿(𝒙, 𝑡) + 1 =
1

(1 − 𝜆1) (1 − 𝜆2) (1 − 𝜆3)
(5.1)

where 𝜆1,2,3 = 𝜆1,2,3(𝑡) are the eigenvalues of the tidal or distortion tensor as before and we
have absorbed the time dependency from the linear growth factor 𝐷 (𝑡) into the eigenvalues
themselves. As before this indicates a tri-axial collapse or expansion, depending on the initial
density contrast. Contrasting the earlier discussion about the expansion of isolated voids, the
tidal tensor here is explicitly external in nature, generated by the statistics of the large scale
perturbation field. If we assume an eigenvalue ordering 𝜆1 > 𝜆2 > 𝜆3 the axes ratios are
given by 𝜈 = ( 1−𝜆1

1−𝜆3
)1/2

and 𝜇 = ( 1−𝜆2
1−𝜆3

). From the definition of the ellipticity we can see that
𝜖 = 1 − 𝜈. To get an analytical form for the ellipticity distribution of voids, it is therefore
necessary to determine the probability distribution of the parameter 𝜈 from the statistics of
the Gaussian density field at a certain redshift z. We will not go through the exact steps of
how this is derived here, but an outline of the argument is as follows: As we have already seen
in chapter 3 (Equation 3.24), the distortion tensor in the ZA is related to the linear potential
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at the Lagrangian position 𝒒:

𝑇𝑖, 𝑗 = − 𝜕𝑠𝑖
𝜕𝑞 𝑗

∝ 𝜕

𝜕𝑞 𝑗
∇𝜙𝑙𝑖𝑛 (𝒒) (5.2)

which is in turn to linear order completely specified by the density perturbation. It is therefore
reasonable to assume that the components 𝑇𝑖 𝑗 also follow a Gaussian distribution, with its
mean and variance determined by the respective statistics of the density perturbation field
(Doroshkevich, 1970). From these assumptions Doroshkevich (1970) derives

𝑝(𝜆1, 𝜆2, 𝜆3;𝜎𝑅) ∝
1
𝜎𝑅

6 𝑒
− 𝑓1 (𝜆1,2,3)

𝜎𝑅
2 + 𝑓2 (𝜆1,2,3)

2𝜎𝑅
2 (𝜆1 − 𝜆2) (𝜆2 − 𝜆3) (𝜆1 − 𝜆3) (5.3)

where once again the smoothing scale enters as a parameter through the smoothing of the
underlying density field and the functions 𝑓1, 𝑓2 are both O(𝜆2). The final distribution
will thus depend on the smoothing scale chosen, a critical point to note, when comparing
this model to observations and simulations alike. Park & Lee (2007) then impose the
additional constraint of 𝛿𝑣 = 𝜆1 + 𝜆2 + 𝜆3 from the Taylor expansion of Equation 5.1 w.r.t.
the eigenvalues to fix the density contrast to the void density contrast since the intention is to
sample the eigenvalues specifically at underdensities. From this, the probability computed
by Doroshkevich (1970) and the relationships of the axis ratios to the eigenvalues, they
are then able to obtain the conditional probability 𝑝(𝜈, 𝜇 |𝛿𝑣, 𝜎𝑅) and by marginalising 𝜇 via
integration 𝑝(𝜈 |𝛿𝑣, 𝜎𝑅). This then fixes the distribution function of ellipticities at a smoothing
scale 𝑅 for a void density contrast 𝛿𝑣. The authors suggest a value of 𝛿𝑣 = 0.9, as we will see
in modern implementations of void finding algorithms a value of 𝛿𝑣 = 0.8 is more common,
however this choice is more or less arbitrary. The most important aspect of this analytical
ellipticity distribution is its clear dependence on the cosmological parameters as shown by
Figure 5.4. The cosmological parameters enter via 𝛿𝑣 = 𝛿𝑣 (𝑧) =

𝛿𝑣,0
𝐷 (𝑧) and 𝜎𝑅 (𝑧) ∝ 𝜎8

𝐷 (𝑧)

Figure 5.4: Ellipticity distributions calculated by Park & Lee (2007) (Figure 1) from their analytical
model for different cosmological parameters. Top and bottom panel at two different smoothing scales.
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because 𝐷 (𝑧) = 𝐷 (𝑧,Ω0,ΩΛ) in standard ΛCDM (Carroll et al., 1992).

5.6 These are(n’t) the voids you’re looking for: Void finding
algorithms

Before we move on to analysing simulated voids, we need to establish how to find them.
There is a wide variety of approaching the problem of finding voids in a given volume.
Historically, the first split of methodologies was between algorithms that used the dark matter
field directly (with an obvious orientation towards simulations) and those that used galaxies
as tracers of the underlying density fields. A major problem of using haloes (or galaxies)
as tracers is their occupation bias towards denser areas, diluting the information that can be
extracted about the density field. As a result of numerous void oriented studies towards this
problem, today void finders are often a hybrid between those two, allowing for more robust
comparisons between observations and simulations by directly controlling for those biases.
A second important distinction to make is between void finding algorithms that assume a
specific shape and (geometric) parameter free void finders.

Void finders based on spherical geometry The former often assume a spherical void
shape, are mostly intended for halo catalogues and essentially find the largest empty (empty
in the sense of containing no haloes above a certain mass or luminosity threshold) sphere
around centers pre-defined by some method (e.g. finding the most underdense particle in a
box by sampling particles and their neighbours Brunino et al., 2007). An idea that takes this
approach further was implemented by Hoyle & Vogeley (2002): Here the sample of haloes is
split into void galaxies and wall galaxies based on their third-neighbor distances. The sample
is then emptied of the void galaxies and the wall galaxies are binned into a regular grid. For
every empty grid cell a sphere is grown until it touches a non-empty cell. The union of these
spheres is then defined as a void. This algorithm already allows for a complex void structure,
nevertheless the individual building blocks of the voids are still spherical.

Tessellation based void finders The next class of void finders make use of known math-
ematical methods for dividing a certain domain into geometrical subvolumes based on a set
of sampling points (which in the case of void finding are the dark matter particles or haloes):
The two most common way of doing this are the Voronoi tessellation and the Delaunay
triangulation. Both are intimately related in the sense that one can be reconstructed from
the other (mathematically speaking they are duals)(Ito, 2015). As a result both algorithms
discussed here operate similarly. The ZOBOV (Zones Bordering On Voids) (Neyrinck, 2008)
algorithm tessellates the volume into Voronoi cells of constant density based on the respective
cell size. The Watershed Void Finder (Platen et al., 2007) leverages the Delaunay triangula-
tion to apply a multi-dimensional linear interpolation to the constant Voronoi density values,
giving a continuous field. Both methods then apply a watershed transform to merge the
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obtained density depression zones into voids. This algorithm can be visually understood by
invoking the picture of flooding a hilly landscape gradually with water. In this picture, the
hills represent the overdensities and the valleys are the voids we are looking for. Initially

Figure 5.5: Qualitative picture of the Watershed transform. Depressions correspond to void zones.
Figure 1 from (Platen et al., 2007)

there will be a very fragmented collection of small ponds. As the water rises the depressions
separated by lower walls will gradually merge to form larger basins. In the extreme case
of flooding everything, the water will have reached a single continuous surface. As this is
generally not desirable in the context of void finding, the common practice is to assign a
maximum water level (i.e. a maximum density a structure within a void can have to still be
considered part of a single void as opposed to a wall between two smaller voids). Motivated
by the considerations in section 5.2 this value is often set to 0.2𝜌 or, as we have seen before,
the theoretical mean density of an isolated void. The void finder we are going to use for the
analysis in the next chapter,VIDE, is based on the ZOBOV method outlined here.

Dynamical void finders Another method to identify voids is closely related to our observa-
tions in the introduction to chapter 4. There we considered the geometric setup of the velocity
field. It was apparent that a void corresponds to a region where all streamlines diverge. In
more formal terms this means that all eigenvalues of the tidal tensor (or the closely related
velocity shear tensor) are negative in void regions, i.e. they are expanding along all three
major axes. This can be used to classify void regions by discretizing the density or velocity
field to a grid and then computing the respective tensor and its eigenvalues at every grid cell,
connecting the cells with all negative eigenvalues to form voids.

5.7 Summing up: The end of the desert

In this chapter we have seen the other side of matter accumulating in the overdense regions.
We have introduced voids with the simple model of a spherical underdensity expanding at
a super-Hubble rate and deduced first important properties like the build up of matter at the
edges and the time of shell crossing from this. Using the familiar method of exploiting the
statistics of the Gaussian perturbation fields, we have derived typical void sizes and found
a new way of looking at the intricate web structure of the cosmos as the small fraction of
volume, where voids are not. From the emerging hierarchy of voids out of the statistics
of the density perturbation field, we have seen that voids can have substructure in the form
of relics from smaller voids merging, or being annexed, into larger voids. Voids also house
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galaxies that are, due to their unique environments, important specimen for studies of galactic
evolution. Adding another layer of complexity, we strayed from the isolated, increasingly
spherical evolution of voids to more realistic conditions. From the statistics of the tidal fields
(or more precisely their eigenvalues) we have seen how to arrive at an analytical description
of the distribution of void ellipticities. The primary result was a clear functional relationship
between these distribution functions and the cosmological parameters governing structure
formation. In the following chapter we will focus on this aspect of void evolution. To
introduce the methodology that the next chapter will be built on, we have finally reviewed
some of the most important approaches to finding voids in density field samples. Now we can
use all this to analyse voids in a fully hydrodynamical simulation, hoping to test the model
and its feasibility against realistic conditions. If the model is robust against the full range
of physics, it can offer a path to determining the cosmological parameters from observations
independently from current methods and in the best case help break the degeneracies that
continue to puzzle modern cosmology.



Chapter 6

Shaping up: Tracing cosmological
parameters with void shapes

6.1 Nothing (else) matters: Void shapes and cosmology

Voids are used to solve problems on local and global scales in our universe. Among their
qualities as statistically isotropic objects discussed in the introduction, their intrinsic prop-
erties have been found to be promising tracers of the dark energy equation of state (Bos
et al., 2012) and the initial conditions (Park & Lee, 2007) in a standard ΛCDM cosmology.
Most of these studies involve the 𝜖-parameter, which is defined as 1 − 𝑎

𝑐
, where 𝑎 and 𝑐 are

the largest and smallest ellipsoidal axes respectively. While the simplest analytical models
expect these regions to become more spherical in shape – as we have seen in the theory –
erasing any imprints of primordial asphericities, voids in simulations and observations alike
have been demonstrated to be highly complex and aspherical in nature even at low redshifts.
Figure 6.1 demonstrates this with a small volume sample of a collection of voids from the
Magneticum suite of cosmological simulations. In the following chapter we will use this

Figure 6.1: Example volume with void particles from simulation box4. The colors indicate the
different voids. A 403 Mpc/h volume is shown, demonstrating the shapes produced by the VIDE void
finder.



60 Chapter 6 – Shaping up: Tracing cosmological parameters with void shapes

richness in shape to investigate the dependency of the large-scale geometry on cosmological
initial conditions, following the path laid out by (Park & Lee, 2007). While the impact of
baryonic physics is expected to be negligible on void scales, there are impacts at the low-size
end, where the definition of a void becomes unclear and voids tend to be embedded in larger
scale overdensities (Paillas et al., 2019). Therefore we will perform our studies in a fully
hydrodynamical simulation box, to capture these effects as well.

6.2 Nothing is clear: Goals and questions

In the previous chapter we have seen the analytical derivation for the void ellipticity distri-
bution and the effects that varying the cosmological initial conditions (within ΛCDM) has
based on the Zel’dovich approximation. As this derivation is based on an approximation that
is only valid until the quasi-linear regime (Hidding et al., 2014) a comparison to numerical
simulation can verify its validity and possibly shed light on deviations from the model due to
non-linear aspects of voids. Park & Lee (2007) already compared their model prediction to
a cosmological simulation. It was the Millennium run (Springel et al., 2005), which showed
good agreement to the model (Park & Lee, 2007). However this was a very limited com-
parison to only one set of cosmological parameters and a dark-matter-only cosmological box
with relatively low resolution. Therefore it is worthwhile to revisit the relationship between
ellipticity and cosmology in light of a modern simulation with full hydrodynamics and sig-
nificantly higher resolution. In the following we will do just that: The question to answer will
be to what extent the assumptions made by (Park & Lee, 2007) hold for voids in a universe
with baryonic physics.

6.3 Nothing on my mind: Tools and Methods

To start working with voids the first and foremost task is to find them. As we have seen in
the background chapter, there are a number of different approaches and tools to define these
underdense domains. While these generally agree better than structure finding methods con-
cerned with overdense structures (Libeskind et al., 2018), there are still differences between
the methods that one has to keep in mind when comparing results obtained with different
tools (Paillas et al., 2019) (owing to collaboration projects such as Colberg et al., 2008 there is
however a quite extensive understanding of the differences between the different approaches).
In the following analysis, I used the VIDE void finding suite (Sutter et al., 2014b) to extract
the simulated voids.

6.3.1 VIDE setup

As discussed before, VIDE is based on the ZOBOV (Neyrinck, 2008) void finding algorithm.
To summarize the discussion in the previous chapter, first the volume is Voronoi tessellated
into zones of constant densities using the tracer particles. In our case, these are the dark
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matter particles. The cell density is inversely proportional to the size of the cell. A watershed
transform is then applied to the density field sampling obtained this way, merging adjacent
depressions into voids. The merging threshold – in other words the maximum density the
edges of a depression can have for it to still be merged with an adjacent depression – is
essentially a user parameter. The construction of the void catalogs we are going to analyse
in the following applies the standard value for the maximum wall height we can merge over:
0.2𝜌 (derived from the mean void density discussed in chapter 5). In this work only the
top most voids in the hierarchy are used, disregarding sub-voids. I checked this method
for consistency and including sub-voids does not alter results significantly (see Figure A.1).
From the void zones and their volume (the sum of the individual Voronoi cell volumes) the
effective radius is defined as 𝑅𝑒 𝑓 𝑓 = ( 3𝑉

4𝜋 )
1/3. We will use this radius as the void radius

in the following. The void ellipticity is computed by VIDE via the inertia tensor of all the
particles in the void zone. From its eigenvalues the ellipticity 𝜖 is then obtained by 𝜖 = 1− 𝐽1

𝐽3

where 𝐽1 and 𝐽3 represent, as before, the largest and smallest eigenvalue (or the shortest and
longest ellipsoidal axis). To save performance and avoid sampling the field at small scales,
it is common to apply a tracer sub-sampling before tessellating. This is implemented in the
preprocessing framework of VIDE and reduces tracer count by randomly picking a fraction
of all tracers. The sub-sampling I employed to obtain the void catalogs ensured a tracer
density of 4 ∗ 10−3/Mpc∗ℎ−1, comparable to the sampling used by Sutter et al. (2013). This
samples the density field still at a rather fine level, allowing in turn for relatively small voids.
As the following sections show however, there are some interesting effects present at the
low-size end of the catalogue, therefore I decided to leave those voids in. With the simulation
resolution the effective minimal void size is 5 Mpc/h. Every Void catalog analysed in the
following also has the standard VIDE density cut applied: Voids with central densities more
than 20% of the mean density are disregarded as spurious.

6.3.2 Parameter Activity: The multi cosmology box from Magneticum

To probe the cosmology dependence of void shapes, we use a set of runs with varying
cosmological parameters from Magneticum. Box1a provides such a suite of cosmological
runs. With a box size of 896 Mpc and 2 ∗ 45363 particles it is suited to produce both realistic
large scale structure and adequate resolution for our analysis. To capture also the evolution of
the voids, all analysis will be done with two snapshots, 𝑧 = 0.0 and 𝑧 = 5.3 respectively. The
parameters that are varied between each run are: The critical fraction of total matter density,
Ω0, the critical fraction of baryon density Ω𝑏, the clustering (variance of the density field)
of matter on the scale of 8 Mpc 𝜎8, the Hubble parameter 𝐻0 and the fraction of baryons
𝑓𝑏 =

Ω𝑏

Ω0
, which of course cannot be varied independently, but serves a good indicator to the

ratio of the strength of baryonic effects to gravity. An overview of the different parameters is
repeated in Table 6.1 from Table 2.1 for convenience:
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run Ω0 Ω𝑏 𝜎8 𝐻0 𝑓𝑏
C1 0.153 0.0408 0.614 66.6 0.267
C2 0.189 0.0455 0.697 70.3 0.241
C3 0.200 0.0415 0.850 73.0 0.208
C4 0.204 0.0437 0.739 68.9 0.214
C5 0.222 0.0421 0.793 67.6 0.190
C6 0.232 0.413 0.687 67.0 0.178
C7 0.268 0.0449 0.721 69.9 0.168
C8 0.272 0.0456 0.809 70.4 0.168
C9 0.301 0.0460 0.824 70.7 0.153
C10 0.304 0.0504 0.886 74.0 0.166
C11 0.342 0.0462 0.834 70.8 0.135
C12 0.363 0.0490 0.884 72.9 0.135
C13 0.400 0.0485 0.650 67.5 0.121
C14 0.406 0.0466 0.867 71.2 0.115
C15 0.428 0.0492 0.830 73.2 0.115

Table 6.1: Parameters of the different runs in Box1a. All runs were performed with the same initial
conditions.

6.3.3 Resulting void catalogs

For an overview of the sample sizes and the average properties of their voids, we provide
Table 6.2. As can be seen from the table, both the mean ellipticity and the mean effective
radius show variation for the different runs. This thesis focuses on the void shapes, but
the stage is set for future research involving also the sizes and their variation. With the

run 𝑁𝑣𝑜𝑖𝑑𝑠 ⟨𝜖⟩ ⟨𝑅𝑒 𝑓 𝑓 ⟩
C1 24306 0.156 14.35
C2 21920 0.158 14.96
C3 18096 0.162 15.67
C4 20974 0.160 15.19
C5 19486 0.160 15.47
C6 22224 0.157 14.95
C7 21389 0.157 15.15
C8 18672 0.159 15.82
C9 18968 0.159 15.74
C10 17399 0.161 15.97
C11 18962 0.159 15.73
C12 17796 0.159 15.99
C13 23564 0.154 14.80
C14 18334 0.158 15.94
C15 19272 0.158 15.77

Table 6.2: Overview of the void catalogs extracted at 𝑧 = 0 with most important properties

parameters set and the catalogs specified we can now investigate the impact of cosmology on
void shapes:
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run 𝑁𝑣𝑜𝑖𝑑𝑠 ⟨𝜖⟩ ⟨𝑅𝑒 𝑓 𝑓 ⟩
C1 44158 0.147 12.04
C2 43663 0.148 12.10
C3 41906 0.147 12.21
C4 43046 0.148 12.14
C5 42986 0.147 12.15
C6 43989 0.147 12.08
C7 43570 0.147 12.11
C8 41210 0.147 12.32
C9 42295 0.147 12.19
C10 42242 0.147 12.21
C11 43107 0.147 12.12
C12 42796 0.147 12.20
C13 44757 0.146 12.07
C14 42804 0.147 12.17
C15 43895 0.146 12.17

Table 6.3: Overview of the void catalogs extracted at 𝑧 = 5.3 with most important properties

6.4 The ellipticity distribution

We compute the probability density distributions for each cosmology by first calculating
histograms with equal bins 𝑁𝑏𝑖𝑛 = 500 and then smoothing these histograms with a Gaussian
kernel to obtain continuous curves.

Limited comparison to the model Figure 6.2 compares the ellipticity functions from
Magneticum to those of the model. Notable is a significantly smaller mean ellipticity and a
much more tight spread of the distribution when compared to the results and model of Park
& Lee (2007). This is especially surprising since the void sizes in Park & Lee (2007) as well
as Bos et al. (2012) match well with Table 6.2 overall. Further investigations are needed as
to why the Magneticum voids appear to be so spherical. A direct comparison with the results
of Park & Lee (2007) is further complicated by the fact that for the test set in that paper, the
parameters are varied in a rather different fashion than for Box1a. One example of this is that
𝜎8 anti-correlates with 𝐻0 in the (Park & Lee, 2007) set, while in the Magneticum set, there
is an 80% positive correlation between those parameters. A full comparison will necessitate
calculating the model predictions for the full Magneticum set. Unfortunately we will have to
leave this to future work. For now we will focus on the ellipticity functions obtained from
the simulation and compare trends to the findings of (Park & Lee, 2007) where appropriate.

Ellipticities of the full sample Figure 6.3 shows the total ellipticity distribution for all
voids in each cosmology. The impact of cosmology is seen, albeit significantly smaller than
the model predicts. A possible reason is the influence of baryonic physics, which should
have the strongest influence at the low size end. From the colors of the curves, one can
deduce that cosmologies with lower 𝜎8 parameters peak at lower ellipticities, i.e. an increase
in this parameter gives more elliptical voids in general. Ellipticities are more pronounced at
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Figure 6.2: Ellipticity distributions from the (Park & Lee, 2007) model compared to the Magneticum
results. To maximize comparability, a single radial bin with ⟨𝑅𝑒 𝑓 𝑓 ⟩ = 10𝑀𝑝𝑐 was used for each
cosmology. This corresponds to the upper panel from the model with 𝑅𝐿 = 5 Mpc, following the
formula given in (Park & Lee, 2007) for computing the smoothing radius from the mean void radius
of a bin: 𝑅𝐿 = (1 + 𝛿𝑣) (1/3)𝑅𝑒 𝑓 𝑓 (where 𝛿𝑣 = −0.9 was assumed).

Figure 6.3: Ellipticity distributions for the different cosmologies at two redshifts. The mean of each
curve is overplotted below the curve. The colors indicate the 𝜎8 parameter of the cosmologies.
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later times, contradicting the linear paradigm of voids growing more spherical in time, but
in line with more detailed theoretical expectations (Park & Lee, 2007,Lee & Park, 2009,Bos
et al., 2012). As the matter distribution evolves, the differences between the cosmologies
grow significantly stronger. To quantify those differences, we can consider the deviations
from the fiducial model. For this we bin the ellipticity distributions for the different runs into
histograms of 100 bins respectively. At each bin center and for each cosmology, the difference
between the respective histogram and the fiducial histogram is then computed. The resulting
difference plot is shown in Figure 6.4: The deviations confirm what was already hinted at in

Figure 6.4: Absolute ellipticity distribution deviations from the fiducial distribution. The shape of
the fiducial distribution is indicated by the grey histogram in the background (not to scale).

Figure 6.3. The largest deviations from the fiducial model can be seen for the cosmologies
with the lowest 𝜎8. The smaller deviations in the pdf in Figure 6.3 at higher redshift appear
to be caused by the larger number of voids in the high redshift sample, since the deviation
amplitudes are of the same order of magnitude as in the low redshift set. The coloring of the
cosmologies by 𝜎8 indicate that the deviations are not as influenced by this parameter at high
redshift as they appear to be at low redshift, showing a much clearer trend in the left panel of
Figure 6.4 compared to the right panel.

To try and deconvolve the influences of the individual parameters as best we can, we
will now study how strongly these parameters correlate with the shape of the ellipticity
distribution. We will use two parameters to characterize the distribution, the mean ellipticity
⟨𝜖⟩ and the mean absolute deviation (per bin) of a given cosmologies’ distribution from the
fiducial cosmology (c8), which we will call ⟨Δ⟩. The latter is for each cosmology the average
of the deviation amplitudes shown in Figure 6.4. To quantify their influence on the void
shapes I compute for each of the cosmological parameters {𝜎8,Ω𝑏,Ω0, 𝐻0, 𝑓𝑏} the pairwise
Pearson correlation coefficient w.r.t. ⟨𝜖⟩ and Δ given by

𝑐𝑋,𝑌 =
⟨(𝑋 − ⟨𝑋⟩)(𝑌 − ⟨𝑌⟩)⟩

𝜎𝑥𝜎𝑦
. (6.1)

Figure 6.5 outs 𝜎8 as the main cause of deviation from the fiducial. Interestingly, this is not
the case at z=5.3, where this parameter does not correlate with deviations at all. In general
there are no strong correlations between the deviations from the fiducial and the parameters
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Figure 6.5: Correlation coefficients of the parameters with the mean absolute deviation from the
fiducial ellipticity distribution

at high redshift, confirming the picture presented in Figure 6.4. So the tidal fields from the
clustering of the matter around the voids apparently only become important later on, as the
overdensity are enhanced by their accretion of matter. The correlations with the mean draw a
surprising picture: Once again, the mean shows a relatively strong positive correlation with
𝜎8, which is physically intuitive, since the stronger the clustering of matter is, the steeper
is the force gradient at the void walls and thus the stronger the tidal fields distorting them.
Contrary to the expectations of Park & Lee (2007), at late times the data indicate a positive
relationship between 𝐻0 and ⟨𝜖⟩. This runs counter to the picture of a faster expansion
evening out ellipticities more effectively. A reason for this might be the so-called void bias:
The smaller voids that drive the ellipticities are generally found in less underdense regions
(Sheth & Tormen, 2004) with a consequently weaker local expansion rate and dominating
tidal fields, dampening the effect of an overall faster expansion. An alternative explanation is
entirely unphysical in nature: Box1a co-varies 𝐻0 very strongly with 𝜎8 with 𝑐𝐻0,𝜎8 = 0.83,
so another cause for this could just be the stronger dependency of the mean on 𝜎8 causing this
puzzling discrepancy. Surprisingly the "tug-of-war" image with the expansion parametrized
by 𝐻0 erasing ellipticity and the tidal fields from Ω0 competing with this effect invoked by
Park & Lee (2007) also fails to manifest in terms of the matter density: Ω0 shows an anti-
correlation early on and almost none at late times. This seems to indicate that it is more the
configuration of mass than the abundance early on determining the local effects tidal fields
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have on the void shapes. Another notable observation is the strong influence of the baryon
fraction at early times, while it seems rather unimportant for the void shapes at late times.
This indicates that as voids grow, baryonic physics become less important to their shapes and
would indicate that baryonic physics renders voids even more elliptical early on. It might
also offer up an alternative explanation for the initially negative correlation of the overall
matter density: Baryon fraction and overall matter density are varied almost exactly opposite
(𝑐Ω0, 𝑓𝑏 = −0.95364797) and the baryon fraction has a strongly positive correlation with mean
ellipticities early on. So this counter-intuitive influence of the overall matter density might
again be caused by its variation with another parameter with a strong influence early on.
Overall a more focused variation of the cosmological parameters in the future might help
shed further light on which of these intriguing correlations are truly of physical nature. It is
at this point hard to discern the effects of this specific variation of parameters from physical
effects. Very clear is that the ellipticity function is influenced by many different cosmological
factors, making a follow-up critical.

6.5 The big nothing: Void size and ellipticity

It is generally expected that voids are more irregular the smaller they get because smaller
voids tend to be found in less underdense regions than bigger voids (dubbed the Void bias
(Sheth & Tormen, 2004)). As a result, smaller voids experience stronger tidal fields at their
boundaries. The radius-ellipticity relation in Figure 6.6 plots the individual void ellipticities

Figure 6.6: Effective Radius-ellipticity distribution. The contours indicate the percentiles of the
fiducial model. A negative shape to radius correlation can be seen.

against their radii and visualizes nicely how the voids grow over time via expansion and
merging. Given the trend of ellipticities increasing with time shown in Figure 6.3, it is
interesting to see how the high-ellipticity voids still present at z=5.3 seem to vanish for
most cosmologies as the cosmic web evolves. This trend is somehow overcompensated by
the general ellipticity of mid-size voids increasing, as is evident by the contour shifting
upward and to the right. This suggests that small and high-ellipticity voids constitute a
relatively small fraction of the total population. As these outliers evolve, they either merge
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with other voids, are squeezed out by surrounding overdensities, or grow to become more
spherical. The void-in-cloud process is significantly more likely at the small-size end of the
void population, since larger underdensities need even larger overdensities enclosing them
in order to be squeezed out (Sheth & van de Weygaert, 2004). A weak negative correlation
of size to ellipticity can be found, aligned with previous investigations (Pisani et al., 2015)
and the theoretical considerations discussed in chapter 5. To answer the question how the
shape evolution depends on the void size, I binned the voids by radii and plotted the ellipticity
distribution for each cosmology at each bin: In Figure 6.7 (upper panels) the differences

Figure 6.7: (Upper panels): Ellipticity distribution for each cosmology at four radial bins. The
bars indicate the means of the distributions. (Lower panel) The mean of each cosmology connected
between the radial bins. Both snapshots are shown with the line style indicating redshift.

between the cosmologies appear most pronounced for small voids. While the larger voids
stay aligned with regards to their shapes, the shift that drives the overall distribution to more
elliptical shapes can clearly be seen. This is most likely at least in part due to the high-𝜖
voids growing and thus entering a higher r-bin, but cannot be wholly explained by this. Voids
growing more elliptical in the tidal fields of their environments is a possible explanation for
this additional total shift of ellipticities. The radial ellipticity profiles (lower panel) for the
individual cosmologies demonstrate the negative relationship between ellipticity and radius
seen in Figure 6.6 once more. A narrowing of the cosmological spread at larger radii indicates
that it is indeed the smaller voids that are mainly driving the differences between cosmologies.
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6.6 The shape of nothing: Conclusions

We have explored the connection between void shapes and the underlying cosmology with
the help of 15 multi-cosmology runs. We confirmed the pronounced dependency of void
shapes on the cosmological parameters derived from theory earlier. This makes real-space
shape analysis a promising candidate for an independent derivation of these parameters from
observations. The parameter with the most apparent impact on how spherical the Magneticum
voids are was found to be 𝜎8 with the general trend being an increase of deviations from
sphericity with an increase of clustering on the scale of 8 Mpc. Other parameters do not
show very clear correlations, with notably 𝐻0 directly contradicting physical expectations
from (Park & Lee, 2007). A follow up study will be needed to shed more light on these
correlations and possibly rule out systematics due to co-variation of certain parameters.
Interestingly, analysing the distributions at two different redshifts showed that cosmology-
induced differences between the ellipticity distributions are significantly smaller at early times
compared to lower redshifts. Combined with an overall increase in mean ellipticity, which
also appears to be robust to variations in the cosmological parameters, this implies that the
observed cosmological variances increase along with the mean ellipticities. At this point we
can make no statement about numerical effects arising due to multiple runs with the same
seed, which can be an issue. A follow up investigation would be helpful here to properly
separate the proper cosmology influences from purely numerical effects.
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Chapter 7

Weaving it all together: Conclusions

This work has been dedicated to the two most fundamental building blocks of the cosmic
web and the influence of baryonic physics on them. The first part focused on the matter
rich regions in the universe and the galaxies and clusters that populate them, while the
second part turned to the vast and underdense voids. To study the physics that shape and
govern these regions in great detail and free from observational biases, we used state-of-the
art cosmological simulations with full hydrodynamics from the Magneticum suite. In the
first part special attention was given to the accretion velocity fields and the outflows the
baryonic interactions can give rise to in the outskirts of haloes. A large mass range of haloes
(1012 − 1015𝑀⊙/ℎ) was selected.

It was shown that, while in general galaxies and clusters cannot be considered scaled
versions of each other, the accretion processes in their outskirts exhibit an astounding self-
similarity. The scaled radial sampling from 1.2 − 5𝑟𝑣𝑖𝑟 that was employed demonstrated
this to hold at every stage of accretion. Comparisons to the predictions of a semi-analytic
model (van den Bosch, 2002) built on the paradigm of hierarchical structure formation
demonstrated a good agreement despite the additional physics. Accretion processes are
largely dominated by gravity however and the self-similarity was found to be broken once
the baryonic physics become more important: The hot (𝑇 ≈ 108𝐾) gaseous outflows driven
predominantly by thermal effects demonstrate a clear schism between galaxies and clusters at
large radii, hinting at possible different driving mechanisms or environmental influences for
these outflows. Around galaxy clusters, these outflows were found to be less extended, with
the general radial profiles consistent with the model of shock driven outflows. Meanwhile
galactic outflows persist to larger radii, indicating either different outflow driving mechanisms
or different environmental conditions. A final verdict is left as an open question to future
investigation.

While the mass flow rates are not consistent between galaxy and cluster outflows, they
share a similar spatial distribution: Inflows were shown to mostly be concentrated in dense
and colder filaments (which still contained significant amounts of gas in the warm phase
𝑇 ≈ 106𝐾), while the outflowing gas is hotter, more diffuse and more homogeneously spread
across the outskirts, in general agreement with expectations (Gouin et al., 2022). Based
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on this picture the duality between dark matter (gravity) dominated physics and baryonic
(pressure dominated) physics is demonstrated quite clearly.

A detailed investigation of the enrichment history of outflowing gas in cluster outskirts
resulted in a rather unambiguous confirmation of our initial suspicions: The outflowing gas
is most likely both pre-heated and enriched at early times in the filaments by their internal
dynamics. At the cluster border this pre-enriched gas is then redistributed by the shocks and
remains cut off from further enrichment and dilution.

On the losing side of the accretion balance a clear dependence of void shapes on the
cosmological parameters was demonstrated in a fully hydrodynamical simulation set. This
confirms theoretical considerations built on a dark matter only model (Park & Lee, 2007)
(and before only tested against dm-only evolution) and implicates real-space void shapes as a
candidate for independent measurements of these parameters, desperately needed to resolve
the current tensions between methodologies. Deviations from the theoretical expectations
manifested themselves in so far as the main driver of void asphericities seems to be the initial
clustering of matter, 𝜎8 (instead of the balance between expansion 𝐻0 and matter density Ω0

as suggested by (Park & Lee, 2007)). If this can be confirmed in future studies, it has the
potential to offer a path towards resolving the "𝜎8 tension".

Analysing the void shapes at different timesteps has proven the voids to grow more
elliptical in time, contradicting the simple model of isolated voids evolving towards a spherical
shape. This is in alignment with expectations for voids in realistic environments however, as
the local tidal effects grow in relative strength to the expansion of the void as matter becomes
increasingly organized. Additionally this explains the observation that the differences between
cosmologies increase from high redshifts to low redshifts. A parameter by parameter analysis
indicated that baryonic effects are important only at high redshifts, while showing almost no
impact on present day shapes. There appears to be a transition in the evolution of voids, after
which they are too large to be significantly impacted by baryons. When exactly this takes
place and the implications for structure formation will be investigated in future work.

To take a step back, one of the essential statements of these results is that the importance
of baryonic effects undergoes exactly contrary evolution in voids and haloes: As the voids
expand with time, the influence of baryons is quickly waning, while the compression in haloes
enhances baryonic effects at the borders. As a result, we see almost no baryonic influences
on the void shapes at late times, while the gas outflows of clusters and galaxies are almost
entirely caused by the collisionality of the baryonic gas. Given what we have learned from
both very overdense and very underdense regions, it has once again been demonstrated, that
a complete picture of structure formation needs to implement both extremes consistently.
Future simulations, implementing yet more detailed physics but also a further developed
theory of structure formation will, in combination with comparisons to the state-of-the-art
observations of today, be integral in forwarding our understanding of the universe from galaxy
to superstructure scale and how these regimes connect.



Appendix A

Parents vs. children: Impact of the void
hierarchy

As a sanity check I computed the ellipticity distribution for a catalog with subvoids included:
No significant impact on the distributions is seen, making the choice most likely irrelevant in
this specific scenario.

Figure A.1: Comparison of the void sample without subvoids (left panel) and with subvoids (right
panel)
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